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Abstract

Several variants of Parikh automata on infinite words were recently introduced by Guha
et al. [FSTTCS, 2022]. We show that one of these variants coincides with blind counter
machine as introduced by Fernau and Stiebe [Fundamenta Informaticae, 2008]. Fernau
and Stiebe showed that every ω-language recognized by a blind counter machine is of
the form

⋃
iUiV

ω
i for Parikh recognizable languages Ui,Vi, but blind counter machines

fall short of characterizing this class of ω-languages. They posed as an open problem to
find a suitable automata-based characterization. We introduce several additional variants
of Parikh automata on infinite words that yield automata characterizations of classes of
ω-language of the form

⋃
iUiV

ω
i for all combinations of languages Ui,Vi being regular or

Parikh-recognizable. When both Ui and Vi are regular, this coincides with Büchi’s classical
theorem. We study the effect of ε-transitions in all variants of Parikh automata and show
that almost all of them admit ε-elimination. Finally we study the classical decision problems
with applications to model checking.

1. Introduction
Finite automata find numerous applications in formal language theory, logic, verification, and
many more, in particular due to their good closure properties and algorithmic properties. To
enrich this spectrum of applications even more, it has been a fruitful direction to add features to
finite automata to capture also situations beyond the regular realm.

One such possible extension of finite automata with counting mechanisms has been introduced
by Greibach in her study of blind and partially blind (one-way) multicounter machines [13].
Blind multicounter machines are generalized by weighted automata as introduced in [20]. Parikh
automata (PA) were introduced by Klaedtke and Rueß in [19]. A PA is a non-deterministic finite
automaton that is additionally equipped with a semi-linear set C, and every transition is equipped
with a d-tuple of non-negative integers. Whenever an input word is read, d counters are initialized
with the values 0 and every time a transition is used, the counters are incremented by the values in
the tuple of the transition accordingly. An input word is accepted if the PA ends in an accepting

The full version of this paper can be found on arXiv [14]
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state and additionally, the resulting d-tuple of counter values lies in C. We call such a pair an
accepting configuration. Klaedtke and Rueß showed that PA are equivalent to weighted automata
over the group (Zk,+,0), and hence equivalent to Greibach’s blind multicounter machines, as
well as to reversal bounded multicounter machines [1, 17]. Recently it was shown that these
models can be translated into each other using only logarithmic space [2]. In this work we
call the class of languages recognized by any of these models Parikh recognizable. Klaedtke
and Rueß [19] showed that the class of Parikh recognizable languages is precisely the class of
languages definable in weak existential monadic second-order logic of one successor extended
with linear cardinality constraints. On finite words, blind counter automata, Parikh automata and
related models have been investigated extensively, extending [13, 19] for example by affine PA
and PA on letters [4, 5], bounded PA [6], two-way PA [12], PA with a pushdown stack [18] as
well as a combination of both [7], history-deterministic PA [8], automata and grammars with
valences [9, 16], and several algorithmic applications, e.g. in the context of path logics for
querying graphs [11].

Guha et al. [15] introduced safety, reachability, Büchi- and co-Büchi Parikh automata. These
models provide natural generalization of studied automata models with Parikh conditions on
infinite words. One shortcoming of safety, reachability and co-Büchi Parikh automata is that they
do not generalize Büchi automata, that is, they cannot recognize all ω-regular languages. The
non-emptiness problem, which is highly relevant for model checking applications, is undecidable
for safety and co-Büchi Parikh automata. Furthermore, none of these models has ω-closure,
meaning that for every model there is a Parikh-recognizable language (on finite words) L such
that Lω is not recognizable by any of these models. They raised the question whether (appropriate
variants of) Parikh automata on infinite words have the same expressive power as blind counter
automata on infinite words.

Büchi’s famous theorem states that ω-regular languages are characterized as languages of
the form

⋃
iUiV

ω
i , where the Ui and Vi are regular languages [3]. As a consequence of the

theorem, many properties of ω-regular languages are inherited from regular languages. For
example, the non-emptiness problem for Büchi automata can basically be solved by testing
non-emptiness for nondeterministic finite automata. In their systematic study of blind counter
automata, Fernau and Stiebe [10] considered the class K∗, the class of ω-languages of the form⋃
iUiV

ω
i for Parikh-recognizable languages Ui and Vi. They proved that the class of ω-languages

recognizable by blind counter machines is a proper subset of the classK∗. They posed as an open
problem to provide automata models that capture classes of ω-languages of the form

⋃
iUiV

ω
i

where Ui and Vi are described by a certain mechanism.

2. Results

In this work, we propose reachability-regular Parikh automata, limit Parikh automata, and reset
Parikh automata as new automata models.

We pick up the question of Fernau and Stiebe [10] to consider classes of ω-languages of the
form

⋃
iUiV

ω
i where Ui and Vi are described by a certain mechanism. We define the four classes

LωReg,Reg, LωPA,Reg, LωReg,PA and LωPA,PA of ω-languages of the form
⋃
iUiV

ω
i , where the Ui,Vi

are regular or Parikh-recognizable languages of finite words, respectively. By Büchi’s theorem
the class LωReg,Reg is the class of ω-regular languages.
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Guha et al. [15] showed that the class of Büchi PA-recognizable ω-languages is a strict
subclass of LωPA,PA. First we show the following characterization.

Theorem 2.1 The following are equivalent for all ω-languages L⊆ Σω:

1. L is Büchi PA-recognizable.

2. L is of the form
⋃
iUiV

ω
i , where Ui ∈ Σ∗ is Parikh-recognizable and Vi ∈ Σ∗ is recognized

by a PA where the initial state is the only accepting state and C is a linear set without
base vector.

We next show that the newly introduced reachability-regular Parikh automata, which are a
small modification of reachability Parikh automata (as introduced by Guha et al. [15]) capture
exactly the class LωPA,Reg. Such an automaton accepts an infinite word if it has a prefix that leads
to an accepting configuration, and an accepting state is seen infinitely often. This model turns
out to be equivalent to limit Parikh automata. Such an automaton utilizes semi-linear sets over
Nd∪{∞} and computes the Parikh image over the whole infinite word component-wise. This
model was hinted at in the concluding remarks of [19].

Theorem 2.2 The following are equivalent for all ω-languages L⊆ Σω.

1. L is of the form
⋃
iUiV

ω
i , where Ui ∈ Σ∗ is Parikh-recognizable, and Vi ⊆ Σ∗ is regular.

2. L is limit PA-recognizable.

3. L is reachability-regular.

Fully resolving the classification of the above mentioned classes we introduce reset Parikh
automata. Such an automaton resets the counters every time an accepting state is seen and the
current counter values lie in the semi-linear set, and accepts an infinite word if it resets infinitely
often. In contrast to all other Parikh models, these are closed under the ω-operation, while
maintaining all algorithmic properties of PA (in particular, non-emptiness is NP-complete and
hence decidable). We show that the class of Reset-recognizable ω-languages is a strict superclass
of LωPA,PA. We show that appropriate graph-theoretic restrictions of reset Parikh automata exactly
capture the classes LωPA,PA and LωReg,PA, yielding the first automata characterizations for these.

Theorem 2.3 The following are equivalent for all ω-languages L⊆ Σω.

1. L is of the form
⋃
iUiV

ω
i , where Ui,Vi ⊆ Σ∗ are Parikh-recognizable.

2. L is recognized by a strong reset PA A with the property that accepting states appear only
in the leaves of the condensation of A, and there is at most one accepting state per leaf.

Theorem 2.4 The following are equivalent for all ω-languages L⊆ Σω.

1. L is of the form
⋃
iUiV

ω
i , where Ui ⊆ Σ∗ is regular and Vi ⊆ Σ∗ is Parikh-recognizable.

2. L is recognized by a strong reset PA A with the following properties.
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(a) At most one state q per leaf of the condensation of A may have incoming transitions
from outside the leaf, this state q is the only accepting state in the leaf, and there are
no accepting states in non-leaves.

(b) only transitions connecting states in a leaf may be labeled with a non-zero vector.

The automata models introduced by Guha et al. [15] do not have ε-transitions, while blind
counter machines have such transitions. Towards answering the question of Guha et al. we study
the effect of ε-transitions in all Parikh automata models. We show that all models except safety
and co-Büchi Parikh automata admit ε-elimination.

Theorem 2.5 ε-reachability, ε-reachability-regular, ε-limit PA, Büchi PA and reset PA admit
ε-elimination.

This in particular answers the question of Guha et al. [15] whether blind counter machines
and Büchi Parikh automata have the same expressive power over infinite words affirmative, as
we can easily show that blind counter machines and ε-Büchi PA are equivalent.

Lemma 2.6 Blind counter machines and Büchi PA are equivalent.

We show that safety and co-Büchi automata with ε-transitions are strictly more powerful
than their variants without ε-transitions, and in particular, they give the models enough power to
recognize all ω-regular languages.

Lemma 2.7 Every ω-regular language is ε-safety PA and ε-co-Büchi PA recognizable.

Corollary 2.8 ε-safety PA and ε-co-Büchi PA do not admit ε-elimination.

Find an overview of these results in Figure 1.

rechability PA

reachability-regular PA
= limit PA = LωPA,Reg

Büchi PA

ω-regular = LωReg,Reg reset PA (∗∗) = LωReg,PA

safety PA ε-safety PA ε-co-Büchi PA co-Büchi PA

reset PA (∗) = LωPA,PA

strong reset PA
= weak reset PA

(∗) At most one state q per leaf of C(A) may have incoming transitions from outside the leaf, this
state q is the only accepting state in the leaf, and there are no accepting states in non-leaves;

(∗∗) and only transitions connecting states in leaves may be labeled with non-zero vectors.

Figure 1: Overview of our results. Arrows mean strict inclusions.
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