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1. Introduction
Safety verification of concurrent systems typically consists of deciding whether two languages
K,L ⊆ Σ∗ are disjoint: If each of the languages describes the set of event sequences that
(i) are consistent with the behavior of a some system component and (ii) reach an undesirable
state, then their intersection is exactly the set of event sequences that are consistent with both
components and reach the undesirable state.

If we wish to not only decide, but certify disjointness of languagesK,L⊆Σ∗, then a natural
kind of certificate is a regular separator: a regular language R ⊆ Σ∗ such that K ⊆ R and
L∩R = ∅. Regular separators can indeed act as disjointness certificates: Deciding whether a
given language intersects (resp. is included in) a regular language is usually simple.

The regular separability problem asks whether for two given languages there exists a reg-
ular separator. This decision problem has recently attracted a significant amount of interest.
After the problem was shown to be undecidable for context-free languages in the 1970s [8, 6],
recent work had a strong focus on vector addition systems (VASS), which are automata with
counters that can be incremented, decremented, but not tested for zero. Typically, VASS are
considered with two possible semantics: With the reachability semantics, where a target con-
figuration has to be reached exactly, and the coverability semantics, where the target only has
to be covered. Decidability of regular separability remains an open problem for reachability se-
mantics. However, decidability has been established for coverability languages of VASS [4] and
several other subclasses, such as one-dimensional VASS [3], integer VASS [1] (where counters
can become negative), and commutative VASS languages [2]. Moreover, for each of these sub-
classes, decidability is retained if one of the input languages is an arbitrary VASS reachability
language [5].

The decidability result about VASS coverability languages is a consequence of a remarkable
and surprising result by Czerwiński, Lasota, Meyer, Muskalla, Kumar, and Saivasan [4]: Two
languages of finitely-branching well-structured transition systems (WSTS) are separable by a
regular language if and only if they are disjoint. (In fact, very recently, Keskin and Meyer [7]
have even shown that the finite branching assumption can be lifted.) Moreover, VASS (with
coverability semantics) are a standard example of (finitely branching) WSTS.
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Despite this range of work on decidability, very little is known about a fundamental aspect
of the separators: What is the size of the separator, if they exist? Here, by size, we mean the
number of states in an NFA or DFA. In fact, the only result we are aware of is a partial answer for
VASS coverability languages: In [4] a triply exponential upper bound and a doubly exponential
lower bound is shown for NFA separating VASS coverability languages, leaving open whether
there always exists a doubly-exponential separator.

Contribution. We study the size of regular separators in VASS coverability languages.
Our first main result is that if two VASS coverability languages are disjoint, then there exists a
doubly exponential-sized separating NFA. We then provide a comprehensive account of separa-
tor sizes for VASS languages: We study separator sizes in (i) fixed/arbitrary dimension, (ii) with
unary/binary counter updates and (iii) deterministic/non-deterministic separators. In each case,
we provide a tight polynomial or singly, doubly, or triply exponential bound.

2. Vector Addition Systems
Let d ∈ N+. A (d-dimensional) vector addition system with states or (d-)VASS is a tuple V =
(Q,Σ,∆,s, t) where Q is a finite set of states, Σ is an alphabet, ∆ ⊆ Q×Σε×Zd×Q is a
finite set of transitions, and s, t ∈ Q are its source resp. target states. Here, Σε denotes the set
Σ∪{ε}.

A configuration is a tuple from Q×Nd. For two configurations (p,~u),(q,~v) ∈ Q×Nd and
w ∈ Σ∗ we write (p,~u)

w−→V (q,~v) if there is ` ∈ N, configurations (qi, ~vi) ∈ Q×Nd for each
0 ≤ i ≤ ` and transitions (qi−1,ai, ~xi, qi) ∈∆ with ~vi = ~vi−1 + ~xi for each 1 ≤ i ≤ ` such that
w = a1a2 . . .a` holds. Here, + is the component-wise addition of integers in d-dimensional
vectors.

The (coverability) language of V is L(V) = {w ∈ Σ∗ | ∃~v ∈ Nd : (s,~0) w−→V (t,~v)}. Note
that ~v ≥~0 holds for any ~v ∈Nd; we say that (t,~v) covers the target configuration (t,~0). We call
L⊆Σ∗ a (coverability) d-VASS-language if there is a d-VASS V with L= L(V).

The following equivalence is known about regular separability of coverability VASS-languages:

Theorem 2.1 ([4]) Let V and W be two VASS. The languages L(V) and L(W) are regular
separable if, and only if, L(V)∩L(W) = ∅ holds.

3. Main Results
In this section, we present the main results of this work. An overview can be found in Table 1.
Here, by i-exp, we mean that there is an i-fold exponential upper bound. All our bounds are
tight in the sense that for each i-exp upper bound, there is also an i-fold exponential lower
bound.

First upper bound. Our first upper bound result is the following.
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NFAs DFAs
unary binary unary binary

d as input 2-exp. 2-exp. 3-exp. 3-exp.

d fixed
d≥ 2 poly. exp. exp. 2-exp.
d= 1 poly. exp. exp. exp.

Table 1: An overview over the upper and lower bounds for finite automata separating two disjoint d-
VASS. We distinguish between (i) whether the dimension d ∈ N+ is part of the input, (ii) whether the
separating automaton should be an NFA or a DFA, and (iii) whether counter updates are encoded in
unary or binary. The colors denote the employed lower bound technique.

Theorem 3.1 Let V1 and V2 be d-VASS with at most n≥ 1 states and updates of norm at most
m ≥ 1. If L(V1)∩L(V2) = ∅, then L(V1) and L(V2) are separated by an NFA with at most
(n+m)2poly(d)

states.

This provides almost all upper bounds in Table 1. In particular, it closes the gap left by [4] by
providing a doubly exponential upper bound for NFA separators in the general case.

Let us explain how we avoid one exponential blow-up compared to [4]. In [4], the authors
first construct VASS V′1 and V′2 such that (i) V′2 is deterministic, (ii) L(V′1)∩L(V′2) = ∅ and
(iii) any separator for L(V′1) and L(V′2) can be transformed into a separator for L(V1) and
L(V2). Then, relying on Rackoff-style bounds for covering runs in VASS, they construct a
doubly exponential NFA separator for L(V′1) and L(V′2). The latter step yields an inherently
non-deterministic separator. However, the transformation mentioned in (iii) requires a comple-
mentation, which results in a triply exponential bound overall.

Instead, roughly speaking, we first apply an observation from [5] to reduce to an even more
specific case: Namely, we construct V such that for the language Cd of all counter instruction
sequences that keep d counter above zero, we have (a) L(V)∩Cd = ∅ and (b) any separator
of L(V) and Cd can be transformed into a separator for L(V1) and L(V2). Then, we rely on
the fact that a particular family (Bk)k∈N of regular languages is a family of basic separators
(a concept introduced by Czerwiński and the second author in [5]): Every language regularly
separable from Cd is included in a finite union of sets Bk. Here, Bk contains all sequences of
counter instructions such that at least one counter at some point falls below zero, but before
that, it never exceeds the value k. We prove a version of this with complexity bounds: We show
that L(V)∩Cd = ∅ implies that L(V) is included in Bk for some doubly exponential bound k.
Here, the key advantage is that we understand the structure of the Bk so well that we can just
observe that the separator Bk is already deterministic. Thus, the complementation step will not
result in another exponential blow-up.

Second upper bound. Theorem 3.1 provides all upper bounds for NFA separators in Ta-
ble 1. It also provides all upper bounds for DFAs where the DFA bound is exponential in the
corresponding NFA bound (via the powerset construction). The only exception to this is the
dark gray entry: Here, the tight DFA bound is actually the same as for NFA.

Theorem 3.2 Let V1 and V2 be 1-VASS with binary updates. If L(V1)∩L(V2) = ∅, then there
exists a separating DFA with at most exponentially many states.
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For this, we observe that the states of NFA resulting from Theorem 3.1 for d= 1 can be equipped
with a partial ordering ≤ such that (i) if p≤ q, then all words accepted from p are also accepted
from q and (ii) every antichain in this ordering has at most polynomial size. This permits
determinization without a blow-up.

Lower bounds. The lower bounds for the first row in our table have already been shown
in [4]. For the others, we use two types of pairs. The first is similar to the language pairs in [4]:

Kf,n = {w ∈ {a,b} | the f(n)-th last letter of w is an a and |w| ≥ f(n)}
Lf,n = {w ∈ {a,b} | the f(n)-th last letter of w is a b or |w|< f(n)}

where f : N→ N is one of the functions n 7→ n (a separating DFA needs 2n states; the purple
entries) or n 7→ 2n (a separating DFA needs 22n states, the yellow entry). In [4], these are used
for n 7→ 22n . The second language pair consists of Ln = {am |m≥ 2n}, and Kn = {am |m<
2n} (an NFA needs 2n states, the light and dark gray entries).
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