
THEORIE-TAG 2023
A. Lin, G. Zetzsche (Eds.): Theorietag 2023, Kaiserslautern, 4. – 6.10.2023

RPTU & MPI-SWS Kaiserslautern, Technical Report, pp. 41–45.

Error-Correcting Parsing – This Time We Want All!
Florian Bruse Stefan Kablowski Martin Lange

Theoretische Informatik / Formale Methoden, Universität Kassel
{florian.bruse, martin.lange}@uni-kassel.de

The Problem and its Motivation. A well-known problem in the theory of formal languages
is that of error-correcting parsing: given a, say, context-free language L over some alphabet Σ,
and a word w ∈ Σ∗, compute a word v ∈L(G) s.t. ∆(w,v) is minimal, where ∆ : Σ∗×Σ∗→R≥0

is some fixed distance metric. Here we are are solely concerned with the Levenshtein metric
[9] which measures distance between two words as the minimal number of insertion, deletion
or replacement operations on letters that turn one of them into the other.

It has been shown that error-correcting parsing (for context-free languages) is conceptually
not much more difficult than ordinary parsing; there are solutions based on Earley’s parser or the
CYK algorithm which, given some w, compute a parse tree for some v ∈ L(G) and a minimal
sequence of edit operations that turn w into v, cf. [1, 10].

The requirement of minimality in the formulation of error-correcting parsing is important.
Suppose a file contains a syntactically misshaped Java program. There are of course many ways
to edit it to become a correct one, for instance by deleting it entirely and inserting the infamous
hello-world program. Such a correction is not minimal in general, though. Minimality allows
us not to introduce a notion of semantical distance between correctly formed and ill-formed
programs; instead we simply assume that the faulty program originated from a correct one, and
the process that introduced syntactic errors is governed by statistical laws so that the program
that is obtained by applying a minimal correction is most likely the original one.

There are, however, applications of parsing in which the reason for some w not belonging to
L cannot be found in some “original” v ∈ L which has been modified to w under laws of statis-
tics. Consider the following scenario. The curricula of natural sciences secondary-education
classes typically contain experimental lessons whose purpose it is to teach pupils the princi-
ples of scientific discovery and reasoning. They are given a research question and are asked
to formulate a matching hypothesis and then to (in-)validate it using some experimental setup.
The Theoretical Computer Science / Formal Methods group at the Univ. of Kassel is involved
in the development of a digital learning tool that initiates adaptive learning by giving feedback
on each step of the process, from formulating a hypothesis to checking its (semantic) correct-
ness [7]. The set of syntactically correct hypotheses can easily be formalised by a context-free
grammar, and it is not hard to imagine that hypotheses formulated by some 8th-grade pupil are
not always grammatically correct. However, here it is neither right nor helpful to automatically
apply a minimal correction in order to continue with the semantical checks, for the following
two reasons.

42 F. Bruse, S. Kablowski, M. Lange

• The cause of syntactical incorrectness may be more than merely a typo; it could be that
the pupil has not fully understood the grammatical structure of hypotheses yet.

• For learning purposes, it is better to present the pupil with some feedback on why his/her
formulation is misshaped and let them correct it.

This leads to the following problem UECP of universal error-correcting parsing.

given: a context-free language L over some alphabet Σ, and a word w ∈ Σ∗

compute: the set of all minimal corrections ρ s.t. ρ(w) ∈ L

As it turns out, in order to suit the application sketched above, we also need a more relaxed
notion of minimality. Consider, for example, the following attempt at formulating a hypothesis
w.r.t. the research question “Does temperature influence yeast growth?”

yeast grows it is warm

An obvious way to correct this would be to insert the word when in position 2, forming “yeast
grows when it is warm.” So the edit distance to a correctly formed hypothesis is 1, and there
are also other ways to execute a single edit to form a correct sentence with potentially different
meaning, for instance inserting because, if, and, etc. However, maybe the author of this pre-
hypothesis has a different idea of causality and actually tried to state

if yeast grows then it is warm

or they actually rightly predicted another aspects of the influence between temperature and yeast
growth but failed to formulate

yeast grows unless it is hot

at edit distance 2. So while these do not reside at an edit distance of minimal length, the former
should definitely be considered to be a minimal correction in the sense that it results from a
minimal set of edit operations (here: insertions only) that create a valid sentence. The notion
of minimality that is formally defined below, does not capture the latter, though. Note that
the two edit operations – inserting “unless” at position 2 and replacing “warm” with “hot” at
position 5 – are independent; they can be carried out in any order (with appropriate adjustments
to the index positions). There is one particular order, namely the one stated here, applying the
insertion before the replacement, which leads to an intermediate word in the language, namely
“yeast grows unless it is warm.” This is why we do not consider this correction to be minimal
– there is an order of its edit operations which produces a word in the language before all edits
are being carried out.

A Theory of Minimality in Corrections. A deletion, resp. insertion operation is written a↓i,
resp. a↑i for a ∈ Σ, i ∈N. A replacement operation is written a/ib for a,b ∈ Σ, i ∈N. An (edit)
operation is either of these three.

Each operation α induces a partial map of type Σ∗ → Σ∗, straight-forwardly realising the
effect of deleting, inserting or replacing a symbol at a particular position in a word. A correction
is a (possibly empty) sequence ρ= (α1, . . . ,αm) of operations. The effect of the application of

Finding All Minimal Corrections for a Context-Free Language 43

a correction to a word, or simply correcting the word, is explained by a homomorphic extension
of the effect that singular edit operations have: ρ(w) := αm(. . .α1(w) . . .).

Two corrections ρ,ρ′ are equivalent if ρ(w) = ρ′(w) for all w ∈ Σ∗. A correction ρ is nor-
malised if

ρ= (a1/i1b1, . . .an/inbn, c1↓j1 , . . . , cm↓jm ,d1↑h1 , . . . ,dk↑hk) (1)

for some n,m,k s.t. i1 > .. . > in, j1 > .. . > jm and h1 ≥ . . .≥ hk.
It is possible to define rules of a rewrite system→ operating on pairs of edit operations that

are sound w.r.t. equivalence. For instance, we would have

ρ,unless↑2,warm/5hot,ρ′ → ρ,warm/4hot,unless↑2,ρ
′

for any ρ,ρ′. Likewise, some combinations cancel each other out like a deletion of a letter
following its insertion, and other pairs can be shortened; e.g. a deletion followed by an insertion
of a different letter at the same position can be rewritten into a replacement. We leave it as an
exercise to formulate up to 3 ·3 ·2 = 18 rules covering the cases in which an operation of one of
the three types is followed by another at either the same or the succeeding position in a word.

Proposition 1 Every correction ρ is equivalent to a normalised ρ′ s.t. ρ→∗ ρ′.

Hence, it suffices to only consider normalised corrections henceforth. We write ρ′ � ρ if ρ′

is a subsequence of ρ. We say that ρ is a �-minimal correction (for some CFG L and a word
w), if ρ(w) ∈ L and ρ′(w) 6∈ L for every ρ′ ≺ ρ. We write CL(w) for the set of normalised ρ
s.t. ρ(w) ∈ L, and Cmin

L (w) for the set of ρ ∈ CL(w) that are �-minimal. The following result is
important in order to make UECP well-defined.

Proposition 2 Let L be a CFL, w ∈ Σ∗. Then (I) CL(w) is a context-free language over a finite
alphabet of edit operations, and (II) Cmin

L (w) is finite.

Computing Minimal Corrections: Theory and Practice. Prop. 1 can be used as a basis for
a simple but highly inefficient enumeration procedure for solving UECP [5]: given L and w,
enumerate all corrections ρ in normal form and check for each of them whether

• ρ(w) ∈ L by computing ρ(w) straight-forwardly and then using a standard parsing algo-
rithm for CFLs, and

• then compute the necessarily finitely many ρ′ ≺ ρ and equally check ρ′(w) 6∈ L for all of
them.

Part (II) of Prop. 2 ensures that this procedure can be terminated at some point.
There is, however, a better way to solve UECP by internalising the construction of (mini-

mal) corrections into the parser’s work. Just as an ordinary (non-error-correcting) context-free
parsing, the problem opens itself up to a solution using dynamic programming as corrections
for a language L and word w can be built from corrections for the subwords of w and poten-
tially different languages. It is not clear, though, whether minimality can be maintained in such
a modular way, too.

There is a conceptually simple way to extend the CYK algorithm [11, 6, 12, 3] to UECP.
Given a CFG G and a word w = a0 . . .an−1, we maintain, likewise, a table T of entries for each

44 F. Bruse, S. Kablowski, M. Lange

subword represented by a pair (i, j) with i ≤ j. However, unlike the original CYK algorithm
which only stores a set of nonterminals A in entry (i, j) s.t. A⇒∗ ai . . .aj , we store a set of
pairs of nonterminals and minimal corrections (A,ρ) s.t. A⇒∗ ρ(ai . . .aj). We then just need
the following amendments, resp. adjustments.

• A table entry T (i, i) is filled with pairs (A,ε) whenever A→ ai as in CYK, and addition-
ally

– with pairs (A,b/iai) whenever A→ b,

– with pairs (A,ai↓i) whenever A→ ε.

• We get (A,ρ)∈ T (i, j) for j ≥ i, whenever A→BC and there are h with i≤ h< j, ρ′,ρ′′

s.t. (B,ρ′) ∈ T (i,h), (C,ρ′′) ∈ T (h+ 1, j) and ρ is the normalisation of ρ′ρ′′′ where ρ′′′

results from ρ′′ by shifting all indices by the number of insertion operations minus the
number of deletion operations in ρ′.

Note that this can potentially add multiple entries with the same nonterminal in a table
entry. Whenever (A,ρ),(A,σ) ∈ T (i, j) and ρ� σ then (A,σ) is removed from T (i, j).

• At last, note that so far, no insertion operations are generated. We first observe that a
sequence of insertions operating consecutively on a word can be ordered and grouped
into parts that consecutively insert letters at the same position. In the special case of the
word to apply them to being ε we easily see that sequences of insertions of the form a↑0
for some a ∈ Σ suffice to turn ε into any target word. It then only remains to see that it
suffices to pre-compute, for any nonterminal A, a set I of pairs of nonterminals A and
minimal pure insertion corrections σ = b0↑0 . . . b`−1↑0 s.t. A⇒ b`−1 . . . b0. These can be
pre-computed once and then used in the following way to additionally fill table entries
(i, j) with i≤ j.

– Whenever A → BC, (B,ρ) ∈ T (i, j) and (C,σ) ∈ I , then add (A,ρ′) to T (i, j)
where ρ′ is the normalisation of ρ ·σ′ and σ′ is obtained from σ by setting all position
indices to j+1 plus the difference of insertions and deletions in ρ as above.

– WheneverA∈BC, (C,ρ)∈ T (i, j) and (B,σ)∈ I , then add (A,ρ′) to T (i, j) where
ρ′ is the normalisation of σ ·ρ′′ and ρ′′ is obtained from ρ by shifting all indices by
|σ|.

Tests run with an OCaml implementation of this algorithm are promising in that it is possible
to compute sets of minimal corrections for grammars with dozens of rules. In order to avoid
costly normalisation in the grammar we build on a CYK variant that does not require Chomsky
normal form [8]. The benchmarks also show, however, that sets of minimal corrections need
not be small, and that in the light of the targeted application described above, it may be useful
to further relax the notion of ≺-minimality s.t. that nature of computing more than just one
correction is sufficiently retained.

We also aim to investigate the possibility to build a solution for UECP based on the Earley
parser [4, 2] to see whether this would lead to a more efficient solution than the CYK-based
one.

Finding All Minimal Corrections for a Context-Free Language 45

References
[1] A. V. AHO, T. G. PETERSON, A minimum distance error correcting parser for context-free lan-

guages. SIAM Journal on Computing 1 (1972) 4, 305–312.

[2] J. AYCOCK, R. N. HORSPOOL, Practical Earley Parsing. The Computer Journal 45 (2002) 6, 620–
630.

[3] J. COCKE, J. T. SCHWARTZ, Programming Languages and Their Compilers. Courant Institute of
Mathematical Sciences, New York, 1970.

[4] J. EARLEY, An Efficient Context-Free Parsing Algorithm. Communications of the ACM 13 (1970),
94–102.

[5] S. KABLOWSKI, Computing All Minimal Corrections for a Word to Match a Context-Free Descrip-
tion. B.sc. thesis, Univ. of Kassel, Germany, Faculty of Electr. Eng. and Comp. Sci., 2022.
https://www.uni-kassel.de/eecs/tifm/abschlussarbeiten/abg

[6] T. KASAMI, An efficient recognition and syntax analysis algorithm for context-free languages.
Technical Report AFCRL-65-758, Air Force Cambridge Research Laboratory, Bedford, Mas-
sachusetts, 1965.

[7] M. KASTAUN, M. MEIER, N. HUNDESHAGEN, M. LANGE, ProfiLL: Professionalisierung durch
intelligente Lehr-Lernsysteme. In: Bildung, Schule, Digitalisierung. Waxmann-Verlag, 2020, 357–
363.

[8] M. LANGE, H. LEISS, To CNF or not to CNF? An Efficient Yet Presentable Version of the CYK
Algorithm. Informatica Didactica 8 (2009).

[9] V. I. LEVENSHTEIN, Binary codes capable of correcting deletions, insertions and reversals. Soviet
Physics Doklady 10 (1966) 8, 707–710. Doklady Akademii Nauk SSSR, V163 No4 845-848 1965.

[10] S. RAJASEKARAN, M. NICOLAE, An Error Correcting Parser for Context Free Grammars that
Takes Less Than Cubic Time. In: Proc. 10th Int. Conf. on Language and Automata, Theory and
Applications, LATA’16. LNCS 9618, Springer, 2016, 533–546.

[11] I. SAKAI, Syntax in universal translation. In: Proc. Int. Conf. on Machine Translation of Languages
and Applied Language Analysis. 1961.

[12] D. H. YOUNGER, Recognition and parsing of context-free languages in time n3. Information and
Control 10 (1967) 2, 372–375.

https://www.uni-kassel.de/eecs/tifm/abschlussarbeiten/abg

	References

