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Abstract

Lyndon words have been extensively studied in different contexts of free Lie algebra
and combinatorics. Lyndon partial words, arrays and trees have been recently introduced
by us and we study on free monoid morphisms that preserve finite Lyndon partial words
and check whether a morphism preserves or does not preserve the lexicographic order. We
proposed an algorithm to determine Lyndon partial words of given length over the binary
alphabet. Image analysis in several way of scanning via automata and grammars has a
significance in two-dimensional models, we connect 2D Lyndon partial words with few
automata and grammar models.

1. Introduction
Partial words are nothing but words with holes over the alphabet. The study of partial words
was initiated by Berstel and Boasson [1] and later the work was extended by Blanchet Sadri
[3, 4]. Lyndon words serve to be a useful tool for a variety of problems in combinatorics. There
are many applications of Lyndon words in semigroups, pattern matching, representation theory
of certain algebras and combinatorics such as they are used to describe the generators of the
free Lie algebras. All of these applications make use of the combinatorial properties of Lyndon
words, in particular the factorisation theorem. Their role in factorising a string over an ordered
alphabet was initially illustrated by Chen et.al [5]. Duval [7] presented a algorithm to derive a
factorisation of strings over an ordered alphabet known as Lyndon factorisation. Lyndon trees
[6] are associated with Lyndon words under the name of standard lexicographic sequences. The
Lyndon arrays[9, 2] of Lyndon words has recently become of interest since it could be used
to efficiently compute all the maximal periodicities in a word. Both Lyndon and partial words
have wide application in pattern matching. In [8], the authors have derived an automaton model
namely Boustrophedon finite automata (BFA) for picture processing, which is equivalent to
Regular matrix grammars (RMGs). The paper has the following organisation. In Section 2
we introduce Lyndon partial words and Lyndon partial arrays. A relation between the Lyndon
partial words and trees is established. In Section 3 we characterise `♦-morphism and show that
they are order-preserving morphism. In Section 4 we investigate few connections to 2D Lyndon
words through 2D Lyndon partial words.
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2. Lyndon Partial Words
Here we introduce and study the generalisation of finite Lyndon partial words by using trees. In
[11], the authors have defined that a primitive partial word is a partial Lyndon word if and only
if it is minimal in its conjugate class with respect to alphabetical order by assuming the order of
♦ as {a≺ b≺ . . .≺ ♦}. The order of ♦ does not play a special role in the definition by studying
properties of partial Lyndon words since the ♦ is considered as a letter with highest order which
makes the definition similar to that of Lyndon words. In our definition of Lyndon partial word,
the order of ♦ plays a special role in studying certain properties.

Definition 2.1 A Lyndon partial word l♦= l♦[1 . . .n] over the ordered alphabet Σk,♦=Σk
⋃
{♦}=

{a1 ≺ a2 ≺ ... ≺ ak}
⋃
{♦},k > 1 is less than all its conjugates (rotations) with respect to the

alphabetical order. Here the order of ♦ is considered as a1 � ♦, ♦ � ak and ♦ is compatible
with all other elements of Σk. A Lyndon partial language over Σ is a subset of Σ∗

♦, the set of all
Lyndon partial words over Σ♦.

For readability we use L♦ notation for partial languages which shall not be confused with
the `♦ notation for Lyndon partial languages. Table 1 shows the set of all Lyndon partial words
with length at most five over the ordered alphabet Σ♦ = {a≺ b}

⋃
{♦}.

Remark 2.2 It is easy to observe that Lyndon partial words on binary alphabet takes the same
integer sequence starting from 2, 3, 6, 9 by excluding the first three numbers namely 1, 2, 1 of
that of Lyndon words as compared and evidenced in Table 1.

Definition 2.3 A Lyndon partial factor l♦[i . . . j] of a Lyndon partial word l♦[i . . .n] for any
j ≤ n is a maximal Lyndon partial factor if it is Lyndon.

Definition 2.4 A Lyndon partial array (denoted as lA♦ ) of l♦[1 . . .n] is an array of integers in
the range [1 . . .n] such that, at each position i = 1 . . .n stores the length of the longest Lyndon
partial factor of l♦[1 . . .n] starting at i.

Example 2.5 Consider a Lyndon partial word l♦[1 . . .7] = aabab♦b. The maximal Lyndon par-
tial factor starting at position 1 is aabab, so lA♦ [1] = 5. The maximal Lyndon partial factor at
position 2 is ab, so lA♦ [2] = 3. The maximal Lyndon partial factor starting at position 3 is b, so
lA♦ [3] = 3. The maximal Lyndon partial factor starting at position 4 is ab, so lA♦ [4] = 5. The max-
imal Lyndon partial factor starting at position 5 is b, so lA♦ [1] = 5. The maximal Lyndon partial
factor starting at position 6 is ♦b, so lA♦ [6] = 7. The maximal Lyndon partial factor starting at
position 7 is b, so lA♦ [7] = 7. Therefore, lA♦ = [5 3 3 5 5 7 7].

Definition 2.6 A tree ζ associated with a Lyndon partial word is described with its minimal
among all of its rotations. = denotes set of such trees. A sub-tree of ζ is a tree with set of nodes
as a subset of ζ .

Theorem 2.7 No proper sub-tree exists as both initial and terminal of the tree ζ .

Theorem 2.8 ζ is a tree of a Lyndon partial word if and only if ζ = P + vQ,v ∈ δ(P ) where
ζ,P,Q ∈ = and P ≺Q.
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Table 1: Lyndon words along with Lyndon partial words
Length Lyndon words Lyndon partial words
0 λ -
1 a,b -
2 ab a♦,♦b
3 aab, abb aa♦,a♦b,♦bb
4 aaab, aabb, abbb aaa♦,aa♦b,a♦ab,a♦bb,ab♦b,♦bbb
5 aaaab,aaabb,aabab, aaaa♦,aaa♦b,aa♦ab,aa♦bb,aab♦b,

aabbb,ababb,abbbb a♦abb,a♦bbb,ab♦bb,♦bbbb
... · · · . . .

Theorem 2.9 Any tree ζ over the alphabet Σ
+
♦ can be uniquely written as ζ = P0 + v1P1 +

v2P2 + ....vkPk,vm ∈ δ(vnPn) for some n�m such that P0 � P1 � P2....� Pk.

3. `♦ - Morphism
In this section we characterise `♦-morphism and show that they are order-preserving morphism.
A non-empty morphism g over an ordered alphabet Σk,♦ containing atleast two letters is an
order-preserving morphism if for all partial words r♦, s♦ over Σ♦, r♦ ≺ s♦⇒ g(r♦)≺ g(s♦).

Definition 3.1 Consider two ordered alphabets U♦ and V♦ each containing atleast two letters
such that a morphism g from U∗

♦ to V ∗
♦ is called a `♦- morphism if for any Lyndon partial words

l♦ over U♦, g(l♦) is a Lyndon partial word over V♦. In short a morphism that preserves the
property of Lyndon partial words is defined as `♦ - morphism.

Theorem 3.2 A non-empty morphism g on Σ
+
♦ containing atleast two letters is a `♦- morphism

if and only if g is an order preserving morphism such that for each u♦ ∈ Σ♦, g(u♦) is a Lyndon
partial word.

Corollary 3.3 g is a `♦- morphism on Σ♦ = {a,b}∪{♦} if and only if g(a) and g(b) are Lyndon
partial words with g(a)≺ g(b).

4. Two-dimensional Lyndon partial words
The concept of Lyndon words are extended as two-dimensional Lyndon words in [10]. Those
are useful to capture 2D horizontal periodicity of a matrix in which each row is highly periodic.
It is also utilised to solve 2D horizontal suffix–prefix matching among a set of rectangular
patterns efficiently. We introduce the following.

Definition 4.1 A two-dimensional row Lyndon partial word is a horizontally primitive matrix
which is least among its horizontal conjugates.
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Definition 4.2 A regular two-dimensional Lyndon partial word is a horizontally primitive ma-
trix which is least of its horizontal conjugates by maintaining a regular order.

In one-dimensional case Lyndon partial words of length 4 over binary alphabet are aaa♦,
aa♦b, a♦ab, a♦bb, ab♦b, ♦bbb. Now we can derive two-dimensional partial words as follows
where there will be many 2D partial words, few sample of those 2D partial words are given in
Example below which maintains a specific/regular ordering of Lyndon partial arrays.

Example 4.3 a a a ♦
a a a ♦ , a a a ♦

a a ♦ b , a a a ♦
a ♦ a b , a a a ♦

a ♦ b b , a a a ♦
♦ b b b , a a ♦ b

a a ♦ b , a a ♦ b
a ♦ a b , a a ♦ b

a ♦ b b , a a ♦ b
♦ b b b , a ♦ a b

a ♦ a b ,

a ♦ a b
a ♦ b b , a ♦ a b

♦ b b b , a ♦ b b
a ♦ b b , a ♦ b b

♦ b b b , ♦ b b b
♦ b b b ,

a a a ♦
a a a ♦
a a a ♦

, · · · ,
♦ b b b
♦ b b b
♦ b b b

,
a a a ♦
a a a ♦
a a a ♦
a a a ♦

, · · · ,
♦ b b b
♦ b b b
♦ b b b
♦ b b b

,

a a a ♦
a a a ♦
a a a ♦
a a a ♦
a a a ♦

, · · · ,

a a a ♦
a a ♦ b
a ♦ a b
a ♦ b b
♦ b b b

, · · · ,

♦ b b b
♦ b b b
♦ b b b
♦ b b b
♦ b b b

.

One can observe that these 6 elements that follows are similar to many other elements which

are NOT present in above collection:

♦ a a a
b a a ♦
b a ♦ a
b a ♦ b
b ♦ b b

,

a ♦ a a
♦ b a a
a b a ♦
b b a ♦
b b ♦ b

,

a a ♦ b
a ♦ a b
a ♦ b b
♦ b b b
a a a ♦

,

a a a ♦
a ♦ a b
a ♦ b b
♦ b b b
a a ♦ b

,

a a a ♦
a a ♦ b
a ♦ b b
♦ b b b
a ♦ a b

,

a a a ♦
a a ♦ b
a ♦ a b
♦ b b b
a ♦ b b

as

these do not satisfy the property of being a regular 2D Lyndon partial word. Now it is of interest
to identify specific/regular 2D Lyndon partial words among those elements. Due to Remark 2.2,
we see the following pattern collected as a 2D partial language which shall be named as LDD

for further references in our work based on [12].

LDD =



a ♦
♦ b

,
a a ♦
a ♦ b
♦ b b

,

a a a ♦
a a ♦ b
a b ♦ b
a ♦ a b
a ♦ b b
♦ b b b

,

a a a a ♦
a a a ♦ b
a a b ♦ b
a a ♦ a b
a a ♦ b b
a b ♦ b b
a ♦ a b b
a ♦ b b b
♦ b b b b

,

a a a a a ♦
a a a a ♦ b
a a a b ♦ b
a a b b ♦ b
a a a ♦ a b
a a a ♦ b b
a a b ♦ a b
a a b ♦ b b
a a ♦ a a b
a a ♦ a b b
a a ♦ b a b
a a ♦ b b b
a ♦ a a a b
a ♦ a b b b
a ♦ b b b b
♦ b b b b b

, · · · ,



.
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