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Abstract

Tree-controlled grammars are context-free grammars where the derivation process is
controlled in such a way that every word on a level of the derivation tree must belong to
a certain control language. We investigate the generative capacity of such tree-controlled
grammars where the control languages are special regular sets, especially strictly locally
testable languages or languages restricted by resources of the generation (number of non-
terminal symbols or production rules) or acceptance (number of states). Furthermore, the
set theoretic inclusion relations of these subregular language families themselves are stud-
ied.

1. Introduction
In the monograph [1] by Jürgen Dassow and Gheorghe Păun, Seven Circumstances Where
Context-Free Grammars Are Not Enough are presented. A possibility to enlarge the generative
power of context-free grammars is to introduce some regulation mechanism which controls the
derivation in a context-free grammar. In some cases, regular languages are used for such a reg-
ulation. They are rather easy to handle and, used as control, they often lead to context-sensitive
or even recursively enumerable languages while the core grammar is only context-free.

One such control mechanism was introduced by Karel Čulik II and Hermann A. Maurer
in [13] where the structure of derivation trees of context-free grammars is restricted by the
requirement that the words of all levels of the derivation tree must belong to a given regular
(control) language. This model is called tree-controlled grammar.

Gheorghe Păun proved that the generative capacity of such grammars coincides with that of
context-sensitive grammars (if no erasing rules are used) or arbitrary phrase structure grammars
(if erasing rules are used). Thus, the question arose to what extend the restrictions can be weak-
ened in order to obtain ‘useful’ families of languages which are located somewhere between the
classes of context-free and context-sensitive languages.

This is an extended abstract of a paper presented at AFL 2023 ([10]).
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In [2, 3, 4, 5, 9, 11, 12], many subregular families of languages have been investigated as
classes for the control languages. In this paper, we continue this research with further subreg-
ular language families, especially strictly locally testable languages or languages restricted by
resources of the generation (number of non-terminal symbols or production rules) or accep-
tance (number of states). Furthermore, the set theoretic inclusion relations of these subregular
language families themselves are studied.

2. Preliminaries
By REG, CF and CS, we denote the set of all regular, all context-free, and all context-sensitive
languages, respectively. With a derivation of a terminal word by a context-free grammar, we
associate a derivation tree which has the start symbol in its root and where every node with a
non-terminal A ∈ N has as children nodes with symbols which form, read from left to right, a
word w such that A→ w is a rule of the grammar (if A→ λ, then the node with A has only
one child node and this is labelled with λ). Nodes with terminal symbols or λ have no children.
With any derivation tree t of height k and any number 0≤ j ≤ k, we associate the word of level
j and the sentential form of level j which are given by all nodes of depth j read from left to right
and all nodes of depth j and all leaves of depth less than j read from left to right, respectively.
Obviously, if two words w and v are sentential forms of two successive levels, then w =⇒∗ v
holds and this derivation is obtained by a parallel replacement of all non-terminal symbols
occurring in the word w.

By MAT , we denote the family of all languages generated by matrix grammars with appear-
ance checking and without erasing rules; by MATfin, we denote the family of all such languages
where the matrix grammar is of finite index ([1], [8]). By E0L (ET0L), we denote the family of
all languages generated by extended (tabled) interactionless Lindenmayer systems ([7]).

By restricting the resources needed for generating or accepting their elements, we define the
following families:

RLV
n = {L | L is gen. by a right-lin. grammar with at most n non-terminal symbols} ,

RLP
n = {L | L is gen. by a right-lin. grammar with at most n production rules} ,

REGZ
n = {L | L is acc. by a DFA with at most n states} .

Furthermore, we consider the following restrictions for regular languages. Let L be a lan-
guage over an alphabet V . With respect to the alphabet V , the language L is said to be
• monoidal if and only if L= V ∗,
• nilpotent if and only if it is finite or its complement V ∗ \L is finite,
• combinational if and only if it has the form L= V ∗X for some subset X ⊆ V ,
• definite if and only if it can be represented in the form L= A∪V ∗B where A and B are

finite subsets of V ∗,
• suffix-closed (or fully initial or multiple-entry language) if and only if, for any two

words x ∈ V ∗ and y ∈ V ∗, the relation xy ∈ L implies the relation y ∈ L,
• ordered if and only if the language is accepted by some deterministic finite automa-

ton A = (V,Z,z0,F,δ) with an input alphabet V , a finite set Z of states, a start
state z0 ∈ Z, a set F ⊆ Z of accepting states and a transition mapping δ where (Z,�)
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is a totally ordered set and, for any input symbol a ∈ V , the relation z � z′ im-
plies δ(z,a)� δ(z′,a),
• commutative if and only if it contains with each word also all permutations of this word,
• circular if and only if it contains with each word also all circular shifts of this word,
• non-counting (or star-free) if and only if there is a natural number k ≥ 1 such that, for ev-

ery three words x ∈ V ∗, y ∈ V ∗, and z ∈ V ∗, it holds xykz ∈ L if and only if xyk+1z ∈ L,
• power-separating if and only if, there is a natural number m ≥ 1 such that for every

word x ∈ V ∗, either Jm
x ∩L= ∅ or Jm

x ⊆ L where Jm
x = { xn | n≥m },

• union-free if and only if L can be described by a regular expression which is only built
by product and star,
• strictly locally k-testable if and only if there are three subsets B, I , and E of V k such

that any word a1a2 . . .an with n≥ k and ai ∈ V for 1≤ i≤ n belongs to the language L
if and only if a1a2 . . .ak ∈ B, aj+1aj+2 . . .aj+k ∈ I for every j with 1 ≤ j ≤ n− k− 1,
and an−k+1an−k+2 . . .an ∈ E,
• strictly locally testable if and only if it is strictly locally k-testable for some natural num-

ber k.
We remark that monoidal, nilpotent, combinational, definite, ordered, union-free, and

strictly locally (k-)testable languages are regular, whereas non-regular languages of the other
types mentioned above exist. Here, we consider among the commutative, circular, suffix-closed,
non-counting, and power-separating languages only those which are also regular.

By FIN, MON, NIL, COMB, DEF, SUF, ORD, COMM, CIRC, NC, PS, UF, SLTk (for any
natural number k≥ 1), and SLT , we denote the families of all finite, monoidal, nilpotent, combi-
national, definite, regular suffix-closed, ordered, regular commutative, regular circular, regular
non-counting, regular power-separating, union-free, strictly locally k-testable, and strictly lo-
cally testable languages, respectively.

For any natural number n≥ 1, let MONn be the set of all languages that can be represented
in the formA∗1∪A∗2∪·· ·∪A∗k with 1≤ k≤ nwhere allAi (1≤ i≤ k) are alphabets. Obviously,

MON = MON1 ⊂MON2 ⊂ ·· · ⊂MONj ⊂ ·· · .

A strictly locally testable language characterized by three finite sets B, I , and E as above
which includes additionally a finite set F of words which are shorter than those of the sets B, I ,
and E is denoted by [B,I,E,F ].

As the set of all families under consideration, we set

F= {FIN,NIL,COMB,DEF,SUF,ORD,COMM,CIRC,NC,PS,UF}
∪{MONk | k ≥ 1 }∪{SLT}∪{ SLTk | k ≥ 1 }
∪{ RLV

n | n≥ 1 }∪{ RLP
n | n≥ 1 }∪{ REGZ

n | n≥ 1 }.

A tree-controlled grammar is a quintuple G= (N,T,P,S,R) where
• (N,T,P,S) is a context-free grammar with a set N of non-terminal symbols, a set T of

terminal symbols, a set P of context-free non-erasing rules (with the only exception that
the rule S → λ is allowed if S does not occur on a right-hand side of a rule), and an
axiom S,
• R is a regular set over N ∪T .
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The language L(G) generated by a tree-controlled grammar G= (N,T,P,S,R) consists of
all such words z ∈ T ∗ which have a derivation tree t where z is the word obtained by reading
the leaves from left to right and the words of all levels of t – besides the last one – belong to the
regular control language R.

Let F be a subfamily of REG. Then, we denote the family of languages generated by tree-
controlled grammars G= (N,T,P,S,R) with R ∈ F by T C(F).

In [6] (see also [1]), it has been shown that a language L is generated by a tree-controlled
grammar if and only if it is generated by a context-sensitive grammar. In subsequent papers,
tree-controlled grammars have been investigated where the control language belongs to some
subfamily of the class REG ([2, 3, 4, 5, 9, 11, 12]). In this paper, we continue this research
with further subregular language families. From the definition follows that the subset relation is
preserved under the use of tree-controlled grammars: if we allow more, we do not obtain less.

3. Results
A summary of all the inclusion relations obtained so far is given in Figure 1. An arrow from
an entry X to an entry Y depicts the inclusion X ⊆ Y ; a solid arrow means proper inclusion; a
dashed arrow indicates that it is not known whether the inclusion is proper. If two families are
not connected by a directed path, then they are not necessarily incomparable. An edge label in
this figure refers to the paper where the respective inclusion is proved.
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Figure 1: Hierarchy of subregularly tree-controlled language families
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4. Future Research
There are several families of languages generated by tree-controlled grammars where we do not
have a characterization by some other language class. The strictness of some inclusions and the
incomparability of some families remain as open problems.

In the present paper, we have only considered tree-controlled grammars without erasing
rules. For tree-controlled grammars where erasing rules are allowed, several results have been
published already (see, e. g., [3, 11, 12]). Also in this situation, there are some open problems.

Another direction for future research is to consider other subregular language families or
to relate the families of languages generated by tree-controlled grammars to language families
obtained by other grammars/systems with regulated rewriting.
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