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Abstract

We introduce and investigate a series of matching problems for patterns with variables
under Simon’s congruence and give a thorough picture of their computational complexity.

1. Introduction
A pattern with variables is a string α ∈ (Σ∪X )∗ consisting of constant letters (or terminals)
from a finite alphabet Σ = {1, ...,σ} of size σ ≥ 2 and a potentially infinite set of variables X
such that Σ∩X = ∅. Here, we assume σ to be bounded by a constant. A pattern is mapped by
a substitution h : (Σ∪X )∗→ Σ∗ which is a morphism that acts as the identity on Σ and maps
each variable of X to a (potentially empty) string over Σ. For example, we can map the pattern
α= xxababyy to the string of constants aaaaababbb by the substitution h with h(x) = aa and
h(y) = b and by that h(α) = aaaaababbb. If a pattern α can be mapped to a string of constants
w, we say that α matches w. The problem of deciding whether there exists a substitution h for a
pattern α such that h(α) =w for a given word w is called the (exact) matching problem, Match.
This heavily studied problem is NP-Complete in general [1], but a series of classes of patterns,
defined by structural restrictions, for which Match is in P were identified [4]. Moreover, for
most of the parameterised classes, Match is W [1]-hard [3] w.r.t. the structural parameters used
to define the respective classes. Recently, Gawrychowski et. al. [7, 8] studied Match in an
approximate setting. In general: given a pattern α and a word w, decide whether there exists
a substitution h such that h(α) is similar to w w.r.t. some similarity measure. Thus, it seems
natural to consider other string-equivalence relations as similarity measures. Here, we consider
an approximate variant of Match using Simon’s congruence ∼k [13].
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Matching under Simon’s Congruence: MatchSimon(α,w,k)
Input: Pattern α, |α|=m, word w, |w|= n, and number k ∈ [n].
Question: Is there a substitution h with h(α)∼k w?

A string u is a subsequence of a string w if u results from w by deleting some letters of w. Let
Sk(w) be the set of all subsequences of a given string w up to length k ∈ N0. Two strings v
and v′ are k-Simon congruent iff Sk(v) = Sk(v′) [13]. Then, we write v ∼k v′. As a similarity
measure for strings, ∼k was optimally solved in [2, 6]. Thus, it seems natural to consider,
in a general setting, the problem of checking whether one can map a given pattern α to a
string which is similar to w w.r.t. ∼k. One of the congruence-classes of Σ∗ w.r.t. ∼k received
much attention: the class of k-subsequene universal words [11, 2] which are those words which
contain all k-length words as subsequences. Here, we consider the following problem, where
ι(w) (universality index of w) is the largest integer ` for which w is `-subsequence universal.

Matching a Target Universality: MatchUniv(α,k)
Input: Pattern α, |α|=m, and k ∈ N0.
Question: Is there a substitution h with ι(h(α)) = k?

Note that MatchUniv can be formulated in terms of MatchSimon. One very important differ-
ence, though, is that we are not explicitly given a target word w but instead, we are given the
number k which represents the target more compactly (using only log k bits).

A well-studied extension of Match is the satifiability problem for word equations (e.g. see
[10]). Here, we extend MatchSimon to the problem of solving word equations under ∼k:

Word Equations under Simon’s Congruence: WESimon(α,β,k)
Input: Patterns α, β, |α|=m, |β|= n, and k ∈ [m+n].
Question: Is there a substitution h with h(α)∼k h(β)?

We present a rather comprehensive picture of the problems’ computational complexity, starting
with MatchUniv and showing that it is NP-complete. Also, we present a series of structurally
restricted classes of patterns for which it can be solved in polynomial time. Then, we dis-
cuss MatchSimon and show its NP-completeness. Finally, we discuss WESimon and its variants,
characterise their computational complexity, and point to a series of future research directions.

2. The NP-Completeness of MatchUniv and MatchSimon

To show that MatchUniv is NP-hard, we reduce the NP-complete problem 3CNFSAT (see [9, 5])
to MatchUniv. The idea is to construct several gadgets which allow us to encode a 3CNFSAT-
instance ϕ as a MatchUniv instance (α,k). Thus, we can find a substitution h for the instance
(α,k) such that ι(h(α)) = k iff ϕ is satisfiable. We recall 3CNFSAT.

3-Satisfiability for formulas in conjunctive normal form, 3CNFSAT.
Input: Clauses ϕ := {c1, c2, . . . , cm}, where cj = (y1

j ∨ y2
j ∨ y3

j ) for 1 ≤ j ≤m, and
y1
j ,y

2
j ,y

3
j from a finite set of boolean variables X := {x1,x2, . . . ,xn} and their

negations X̄ := {x̄1, x̄2, . . . , x̄n}.
Question: Is there an assignment for X , which satisfies all clauses of ϕ?

Further, we get NP-containment by using a slight variation of subsequence universality signa-
tures [12] such that the maximal length of certificates is polynomial in the input.

Theorem 2.1 MatchUniv is NP-complete.
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By restricting the input patterns, we get two classes of patterns such that MatchUniv can be
solved in polynomial time.

Proposition 2.2 MatchUniv(α,k) ∈ P if there exists a variable that occurs only once in α.
So, MatchUniv(α,k) ∈ P for regular patterns (see e.g. [4]) α. Also, MatchUniv(α.k) ∈ P if
|var(α)| is constant.

Further, we discuss the MatchSimon problem. In case of MatchSimon we are given a pattern
α, a word w, and a natural number k ≤ |w| and we want to check the existence of a sub-
stitution h such that h(α) ∼k w. We immediately get that MatchSimon is NP-hard, because
MatchSimon(α,w, |w|) is equivalent to Match(α,w) and Match is NP-complete. Notice that
this result followed much easier than the corresponding lower bound for MatchUniv because
in MatchSimon we only ask for h(α)∼k w and allow h(α)∼k+1 w, while in MatchUniv h(α)
has to be strict k-universal but not (k+1)-universal. Thus, we consider the following problem.

Matching under Strict Simon’s Congruence: MatchStrictSimon(α,w,k)
Input: Pattern α, |α|=m, word w, |w|= n, and k ∈ [n].
Question: Is there a substitution h with h(α)∼k w and h(α) 6∼k+1 w?

Adapting the reduction used for Theorem 2.1, we can show that MatchStrictSimon is NP-
hard. For the NP-containment, we know that it is enough to only consider strings of length up to
O((k+1)σ) as potential substitutions of the variables in a substitution h for a pattern α. Longer
strings can be replaced with shorter ones which are ∼k-congruent with the same impact on the
sets Sk(h(α)).

Theorem 2.3 MatchSimon and MatchStrictSimon are NP-complete.

If the patterns are regular, note that MatchSimon and MatchStrictSimon are in P.

Proposition 2.4 MatchSimon(α,w,k),MatchStrictSimon(α,w,k) ∈ P if α is regular.

3. An Analysis of WESimon
Finally, we address the WESimon problem, where we are given two patterns α and β and a
natural number k and we want to check the existence of a substitution h with h(α)∼k h(β).

Theorem 3.1 WESimon is NP-complete.

To avoid trivial cases arising for WESimon, we also consider a stricter variant of this problem
which, in contrast to WESimon, is NP-hard in all cases.

Word Equations under Strict Simon’s Congruence: WEStrictSimon(α,β,k)
Input: Patterns α, β, |α|=m, β = n, and k ∈ [m+n].
Question: Is there a substitution h with h(α)∼k h(β) and h(α) 6∼k+1 h(β)?

Lemma 3.2 WEStrictSimon is NP-hard, even if both patterns contain variables.

Regarding the NP-membership, if k is upper bounded by a polynomial function in |α|+ |β|, we
get that WEStrictSimon ∈ NP. Otherwise, the question of the NP-membership remains open.

Theorem 3.3 WEStrictSimon is NP-complete for all k ≤ |α|+ |β|.
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4. Conclusion
We considered the problem of matching patterns with variables under Simon’s congruence.
Specifically, we considered the three main problems MatchUniv, MatchSimon, WESimon, strict
variations MatchStrictSimon and WEStrictSimon, and have given a comprehensive image
of their computaitonal complexity. In general, these problems are NP-complete, but have in-
teresting particular cases which are in P. Interestingly, our NP and P algorithms work in (non-
deterministic) polynomial time only in the case of a constant input alphabet. A characterisation
of the parameterised complexity of these problems w.r.t. the parameter σ might be interesting.
Another paramter of interest could be the number of variables of the considered patterns. We
conjecture that the problems are W [1]-hard with respect to both of these parameters.
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