Remarks on Parikh-recognizable ω -languages

Mario Grobler, Leif Sabellek, Sebastian Siebertz October 4, 2023

Check membership of v in given semi-linear set C; e.g

- Are both counter values equal?
- Is the first value at least twice the second value?

A Parikh automaton (PA) is a tuple (\mathcal{A}, C) .

A Parikh automaton (PA) is a tuple (\mathcal{A}, C) .

Accept if

- there is an accepting run, and
- summed up vector v is contained in C.

Recognized language: L(A, C) = ?

A Parikh automaton (PA) is a tuple (\mathcal{A}, C) .

Accept if

- there is an accepting run, and
- summed up vector v is contained in C.

Recognized language: $L(\mathcal{A}, C) = \{a^n b^n \mid n \ge 1\}.$

Studied as a tool to decide an existential fragment of (W)MSO with cardinality constraints [Klaedtke & Ruess, 2003].

Equivalent models:

- Blind-counter automata [Greibach, 1978].
- Weighted automata over $(\mathbb{Z}^k, +, \mathbf{0})$ [Mitrana & Stiebe, 2001].
- Reversal-bounded multicounter machines [Ibarra, 1978].

These models can be translated into each other in logspace

[Baumann et al., 2023].

To infinity and beyond

Recall Büchi automata which operate on infinite words.

Input: *infinite* words $\alpha_1 \alpha_2 \alpha_3 \dots$

Acceptance: Visit accepting state infinitely often.

Recall Büchi automata which operate on infinite words.

Input: infinite words $\alpha_1 \alpha_2 \alpha_3 \dots$

Acceptance: Visit accepting state infinitely often.

Input: ababab... Run: q₀

Recall Büchi automata which operate on infinite words.

Input: infinite words $\alpha_1 \alpha_2 \alpha_3 \dots$

Acceptance: Visit accepting state infinitely often.

Input: ababab... Run: $q_0 q_0$

Recall Büchi automata which operate on infinite words.

Input: infinite words $\alpha_1 \alpha_2 \alpha_3 \dots$

Acceptance: Visit accepting state infinitely often.

Input: ababab... Run: $q_0q_0q_1$

Recall Büchi automata which operate on infinite words.

Input: infinite words $\alpha_1 \alpha_2 \alpha_3 \dots$

Acceptance: Visit accepting state infinitely often.

Input: ababab... Run: $q_0q_0q_1q_0$

Recall Büchi automata which operate on infinite words.

Input: infinite words $\alpha_1 \alpha_2 \alpha_3 \dots$

Acceptance: Visit accepting state infinitely often.

Input: ababab... Run: $q_0q_0q_1q_0q_1$

Recall Büchi automata which operate on infinite words.

Input: infinite words $\alpha_1 \alpha_2 \alpha_3 \dots$

Acceptance: Visit accepting state infinitely often.

Input: ababab... Run: $q_0q_0q_1q_0q_1q_0$

Recall Büchi automata which operate on infinite words.

Input: infinite words $\alpha_1 \alpha_2 \alpha_3 \dots$

Acceptance: Visit accepting state infinitely often.

Input: ababab... Run: $q_0q_0q_1q_0q_1q_0q_1...\sqrt{}$

Recall Büchi automata which operate on infinite words.

Input: infinite words $\alpha_1 \alpha_2 \alpha_3 \dots$

Acceptance: Visit accepting state infinitely often.

Input: ababab... Run: $q_0q_0q_1q_0q_1q_0q_1...\sqrt{}$

Büchi automata recognize the ω -regular languages.

PA on infinite words

How to define PA on infinite words?

- Answered independently by Guha et al., 2022.
- They proposed the following models:

co-Büchi PA

PA on infinite words

How to define PA on infinite words?

- Answered independently by Guha et al., 2022.
- They proposed the following models:

co-Büchi PA

Büchi's Theorem

A language $L \subseteq \Sigma^{\omega}$ is ω -regular if and only if there are regular languages $U_1, V_1, \ldots, U_n, V_n \subseteq \Sigma^*$ with $L = U_1 V_1^{\omega} \cup \cdots \cup U_n V_n^{\omega}$.

What happens if we plug in PA-recognizable languages?

- $\mathcal{L}_{\text{Reg,Reg}}^{\omega}$: regular U_i and V_i .
- $\mathcal{L}_{\text{Reg,PA}}^{\omega}$: regular U_i and PA-recognizable V_i .
- $\mathcal{L}_{PA,Reg}^{\omega}$: PA-recognizable U_i and regular V_i .
- $\mathcal{L}_{PA,PA}^{\omega}$: PA-recognizable U_i and V_i .

Büchi's Theorem

A language $L \subseteq \Sigma^{\omega}$ is ω -regular if and only if there are regular languages $U_1, V_1, \ldots, U_n, V_n \subseteq \Sigma^*$ with $L = U_1 V_1^{\omega} \cup \cdots \cup U_n V_n^{\omega}$.

What happens if we plug in PA-recognizable languages?

- $\mathcal{L}_{\text{Reg,Reg}}^{\omega}$: regular U_i and V_i .
- $\mathcal{L}_{\text{Reg,PA}}^{\omega}$: regular U_i and PA-recognizable V_i .
- $\mathcal{L}_{PA,Reg}^{\omega}$: PA-recognizable U_i and regular V_i .
- $\mathcal{L}_{PA,PA}^{\omega}$: PA-recognizable U_i and V_i .

Lemma [Guha et al., 2022]

Büchi PA recognize a strict subset of $\mathcal{L}_{PA,PA}^{\omega}$.

Limit PA

First, we define limit PA:

• Here, we consider semi-linear sets over $(\mathbb{N} \cup \{\infty\})^d$.

Limit PA

First, we define limit PA:

• Here, we consider semi-linear sets over $(\mathbb{N} \cup \{\infty\})^d$.

We compute the sum of vectors over the whole infinite word:

- $\bullet\,$ Component is ∞ if the series diverges.
- Example: run on *abbaba*^{ω} yields (∞ , 3).

Accept if an acc. state is seen infinitely often and vector is in C.

Limit PA

First, we define limit PA:

• Here, we consider semi-linear sets over $(\mathbb{N} \cup \{\infty\})^d$.

We compute the sum of vectors over the whole infinite word:

- $\bullet\,$ Component is ∞ if the series diverges.
- Example: run on *abbaba*^{ω} yields (∞ , 3).

Accept if an acc. state is seen infinitely often and vector is in C.

• Here: accepts
$$\alpha$$
 if $|\alpha|_b < \infty$

Rechability-regular PA

Next, we define reachability-regular PA:

Accept an infinite word if

- it has a finite prefix that is accepted by the underlying PA and
- an infinite state is seen infinitely often.

Rechability-regular PA

Next, we define reachability-regular PA:

Accept an infinite word if

- it has a finite prefix that is accepted by the underlying PA and
- an infinite state is seen infinitely often.

Here: accepts $w\beta$ if $|\beta|_b = \infty$, $|w|_a \ge |w|_b$ and w ends with b.

Bringing them together

Lemma

The following are equivalent for all ω -languages $L \subseteq \Sigma^{\omega}$.

- 1. *L* is limit PA-recognizable.
- 2. *L* is reachability-regular.
- 3. *L* is in $\mathcal{L}_{PA,Reg}^{\omega}$.

Side-product: for every limit PA there is an equivalent limit PA whose semi-linear set C does not use ∞ , that is $C \subseteq \mathbb{N}^d$.

We observe:

- If L is reachability PA-recognizable, then L is in $\mathcal{L}_{PA,Reg}^{\omega}$.
- If *L* is in $\mathcal{L}^{\omega}_{\mathsf{PA},\mathsf{Reg}}$, then *L* is Büchi PA-recognizable.

Overview

co-Büchi PA

Reset PA

Finally, we define reset PA:

- Whenever an acc. state is visited, the value *must* be in *C*.
- Then the counters are reset. Accept if there are ∞ resets.

Reset PA

Finally, we define reset PA:

- Whenever an acc. state is visited, the value *must* be in *C*.
- Then the counters are reset. Accept if there are ∞ resets.

Here: recognizes $\{a^n b^n \mid n \ge 1\}^{\omega}$

Reset PA

Reset PA are closed under \cdot^{ω} .

- Reset PA recognize a strict superset of $\mathcal{L}_{PA,PA}^{\omega}$.
- ► Still NP-complete emptiness problem.

Restricting reset PA yield an automata characterization of $\mathcal{L}^{\omega}_{\mathsf{PA},\mathsf{PA}}$.

Restricting reset PA yield an automata characterization of $\mathcal{L}^{\omega}_{PA,PA}$.

We consider the condensation (dag of connected components).

Restricting reset PA yield an automata characterization of $\mathcal{L}^{\omega}_{PA,PA}$.

We consider the condensation (dag of connected components).

 If accepting states appear only in leaves, and there is at most one accepting state per leaf, we exactly capture L^ω_{PA,PA}.

Restricting reset PA yield an automata characterization of $\mathcal{L}^{\omega}_{PA,PA}$.

We consider the condensation (dag of connected components).

- If accepting states appear only in leaves, and there is at most one accepting state per leaf, we exactly capture L^ω_{PA,PA}.
- A further restrictions yields a characteriztion of $\mathcal{L}^{\omega}_{\mathsf{Reg},\mathsf{PA}}$.

Overview

safety PA co-Büchi PA

(*) suitable graph theoretical restrictions

Blind counter machines on infinite words [Fernau & Stiebe, 2007]

- Transitions are equipped with (possibly negative) integers.
- Accept if an acc. state is seen ∞ often while counters are 0.
- Silent transitions (ε -transitions) are allowed.

Blind counter machines on infinite words [Fernau & Stiebe, 2007]

- Transitions are equipped with (possibly negative) integers.
- Accept if an acc. state is seen ∞ often while counters are 0.
- Silent transitions (ε-transitions) are allowed.

Büchi PA [Guha et al., 2022]

- Syntactically equivalent to PA.
- Accept if an acc. state is seen ∞ often while counters are in C.
- Silent transitions (ε -transitions) are not allowed.

Blind counter machines on infinite words [Fernau & Stiebe, 2007]

- Transitions are equipped with (possibly negative) integers.
- Accept if an acc. state is seen ∞ often while counters are 0.
- Silent transitions (ε -transitions) are allowed.

Büchi PA [Guha et al., 2022]

- Syntactically equivalent to PA.
- Accept if an acc. state is seen ∞ often while counters are in C.
- Silent transitions (ε -transitions) are not allowed.

We show that they are equivalent, answering an open question.

• Technical part: removal of ε -transitions (thanks Georg!)

Natural question: which models do admit ε -elimination?

- ► Almost all, the exception being safety and co-Büchi PA.
- Often a direct consequence of characterization lemmas (finite word PA admit ε-elimination).
- Sometimes more technical, e.g. for reset PA.

Natural question: which models do admit ε -elimination?

- ► Almost all, the exception being safety and co-Büchi PA.
- Often a direct consequence of characterization lemmas (finite word PA admit ε-elimination).
- Sometimes more technical, e.g. for reset PA.

For safety and co-Büchi PA, we can use ε -transitions to encode the acceptance condition of Büchi automata.

• Hence, these models recognize all ω -regular languages.

Conclusion

(*) suitable graph theoretical restrictions

Conclusion

(*) suitable graph theoretical restrictions