Remarks on Parikh-recognizable $\boldsymbol{\omega}$-languages

Mario Grobler, Leif Sabellek, Sebastian Siebertz
October 4, 2023

Parikh automata

Consider the NFA \mathcal{A}

$a \quad b$

with input
a
a
$b \quad b$

Parikh automata

Consider the NFA \mathcal{A}

with input $a \quad a \quad b \quad b$

Parikh automata

Consider the NFA \mathcal{A}

with input a
a
b
b
Run: q_{0}

Parikh automata

Consider the NFA \mathcal{A}

with input a a
b
b
Run: $q_{0} q_{0}$

$$
v=\binom{1}{0}
$$

Parikh automata

Consider the NFA \mathcal{A}

with input a
a
b
b
Run: $q_{0} q_{0} q_{1}$

$$
v=\binom{1}{0}+\binom{1}{0}
$$

Parikh automata

Consider the NFA \mathcal{A}

with input a
$a \quad b$
$b \quad b$
Run: $q_{0} q_{0} q_{1} q_{1}$

$$
v=\binom{1}{0}+\binom{1}{0}+\binom{0}{1}
$$

Parikh automata

Consider the NFA \mathcal{A}

with input

$$
\left.\begin{array}{lccc}
a & a & b & b \\
v
\end{array}=\begin{array}{l}
1 \\
0
\end{array}\right)+\binom{1}{0}+\binom{0}{1}+\binom{0}{1}=\binom{2}{2} \quad \text { Run: } q_{0} q_{0} q_{1} q_{1} q_{1}
$$

Parikh automata

Consider the NFA \mathcal{A}

with input

$$
\begin{aligned}
& \mathrm{t} \\
& v=\binom{a}{0}+\binom{1}{0}+\binom{0}{1}+\binom{0}{1}=\binom{2}{2}
\end{aligned}
$$

Run: $q_{0} q_{0} q_{1} q_{1} q_{1}$

Check membership of v in given semi-linear set C; e.g

- Are both counter values equal?
- Is the first value at least twice the second value?

Parikh automata

A Parikh automaton (PA) is a tuple (\mathcal{A}, C).

Parikh automata

A Parikh automaton (PA) is a tuple (\mathcal{A}, C).

Accept if

- there is an accepting run, and
- summed up vector v is contained in C.

Recognized language: $L(\mathcal{A}, C)=$?

Parikh automata

A Parikh automaton (PA) is a tuple (\mathcal{A}, C).

$$
\begin{aligned}
& C=\left\{\left.\binom{1}{1} z \right\rvert\, z \in \mathbb{N}\right\}
\end{aligned}
$$

Accept if

- there is an accepting run, and
- summed up vector v is contained in C.

Recognized language: $L(\mathcal{A}, C)=\left\{a^{n} b^{n} \mid n \geq 1\right\}$.

History of Parikh automata

Studied as a tool to decide an existential fragment of (W)MSO with cardinality constraints [Klaedtke \& Ruess, 2003].

Equivalent models:

- Blind-counter automata [Greibach, 1978].
- Weighted automata over $\left(\mathbb{Z}^{k},+, \mathbf{0}\right)$ [Mitrana \& Stiebe, 2001].
- Reversal-bounded multicounter machines [Ibarra, 1978].

These models can be translated into each other in logspace [Baumann et al., 2023].

To infinity and beyond

Reminder: Büchi automata

Recall Büchi automata which operate on infinite words.

Input: \quad infinite words $\alpha_{1} \alpha_{2} \alpha_{3} \ldots$
Acceptance: Visit accepting state infinitely often.

Reminder: Büchi automata

Recall Büchi automata which operate on infinite words.

Input: \quad infinite words $\alpha_{1} \alpha_{2} \alpha_{3} \ldots$
Acceptance: Visit accepting state infinitely often.

Input: $\quad a b a b a b \ldots$ Run: q_{0}

Reminder: Büchi automata

Recall Büchi automata which operate on infinite words.

Input: \quad infinite words $\alpha_{1} \alpha_{2} \alpha_{3} \ldots$
Acceptance: Visit accepting state infinitely often.

Input: ababab... Run: $q_{0} q_{0}$

Reminder: Büchi automata

Recall Büchi automata which operate on infinite words.

Input: \quad infinite words $\alpha_{1} \alpha_{2} \alpha_{3} \ldots$
Acceptance: Visit accepting state infinitely often.

Input: \quad ababab... Run: $q_{0} q_{0} q_{1}$

Reminder: Büchi automata

Recall Büchi automata which operate on infinite words.

Input: \quad infinite words $\alpha_{1} \alpha_{2} \alpha_{3} \ldots$
Acceptance: Visit accepting state infinitely often.

Input: \quad ababab... $\quad q_{0} q_{0} q_{1} q_{0}$

Reminder: Büchi automata

Recall Büchi automata which operate on infinite words.

Input: \quad infinite words $\alpha_{1} \alpha_{2} \alpha_{3} \ldots$
Acceptance: Visit accepting state infinitely often.

Input: \quad ababab... \quad Run: $q_{0} q_{0} q_{1} q_{0} q_{1}$

Reminder: Büchi automata

Recall Büchi automata which operate on infinite words.

Input: \quad infinite words $\alpha_{1} \alpha_{2} \alpha_{3} \ldots$
Acceptance: Visit accepting state infinitely often.

Input: $\quad a b a b a b \ldots \quad$ Run: $q_{0} q_{0} q_{1} q_{0} q_{1} q_{0}$

Reminder: Büchi automata

Recall Büchi automata which operate on infinite words.

Input: \quad infinite words $\alpha_{1} \alpha_{2} \alpha_{3} \ldots$
Acceptance: Visit accepting state infinitely often.

Input: \quad Run: $\quad q_{0} q_{0} q_{1} q_{0} q_{1} q_{0} q_{1} \ldots \checkmark$

Reminder: Büchi automata

Recall Büchi automata which operate on infinite words.

Input: \quad infinite words $\alpha_{1} \alpha_{2} \alpha_{3} \ldots$
Acceptance: Visit accepting state infinitely often.

Input: \quad Run: $\quad q_{0} q_{0} q_{1} q_{0} q_{1} q_{0} q_{1} \ldots \checkmark$

Büchi automata recognize the ω-regular languages.

PA on infinite words

How to define PA on infinite words?

- Answered independently by Guha et al., 2022.
- They proposed the following models:

PA on infinite words

How to define PA on infinite words?

- Answered independently by Guha et al., 2022.
- They proposed the following models:

safety PA
co-Büchi PA

Büchi's Theorem and friends?

Büchi's Theorem

A language $L \subseteq \Sigma^{\omega}$ is ω-regular if and only if there are regular languages $U_{1}, V_{1}, \ldots, U_{n}, V_{n} \subseteq \Sigma^{*}$ with $L=U_{1} V_{1}^{\omega} \cup \cdots \cup U_{n} V_{n}^{\omega}$.

What happens if we plug in PA-recognizable languages?

- $\mathcal{L}_{\text {Reg,Reg }}^{\omega}$: regular U_{i} and V_{i}.
- $\mathcal{L}_{\text {Reg,PA }}^{\omega}$: regular U_{i} and PA-recognizable V_{i}.
- $\mathcal{L}_{\text {PA,Reg }}^{\omega}$: PA-recognizable U_{i} and regular V_{i}.
- $\mathcal{L}_{\mathrm{PA}, \mathrm{PA}}^{\omega}:$ PA-recognizable U_{i} and V_{i}.

Büchi's Theorem and friends?

Büchi's Theorem

A language $L \subseteq \Sigma^{\omega}$ is ω-regular if and only if there are regular languages $U_{1}, V_{1}, \ldots, U_{n}, V_{n} \subseteq \Sigma^{*}$ with $L=U_{1} V_{1}^{\omega} \cup \cdots \cup U_{n} V_{n}^{\omega}$.

What happens if we plug in PA-recognizable languages?

- $\mathcal{L}_{\text {Reg,Reg }}^{\omega}$: regular U_{i} and V_{i}.
- $\mathcal{L}_{\text {Reg,PA }}^{\omega}$: regular U_{i} and PA-recognizable V_{i}.
- $\mathcal{L}_{\text {PA,Reg }}^{\omega}$: PA-recognizable U_{i} and regular V_{i}.
- $\mathcal{L}_{\mathrm{PA}, \mathrm{PA}}^{\omega}$: PA-recognizable U_{i} and V_{i}.

Lemma [Guha et al., 2022]
Büchi PA recognize a strict subset of $\mathcal{L}_{\mathrm{PA}, \mathrm{PA}}^{\omega}$.

Limit PA

First, we define limit PA:

- Here, we consider semi-linear sets over $(\mathbb{N} \cup\{\infty\})^{d}$.

$$
C=\left\{\left.\binom{\infty}{n} \right\rvert\, n \in \mathbb{N}\right\}
$$

Limit PA

First, we define limit PA:

- Here, we consider semi-linear sets over $(\mathbb{N} \cup\{\infty\})^{d}$.

$$
C=\left\{\left.\binom{\infty}{n} \right\rvert\, n \in \mathbb{N}\right\}
$$

We compute the sum of vectors over the whole infinite word:

- Component is ∞ if the series diverges.
- Example: run on abbaba ${ }^{\omega}$ yields $(\infty, 3)$.

Accept if an acc. state is seen infinitely often and vector is in C.

Limit PA

First, we define limit PA:

- Here, we consider semi-linear sets over $(\mathbb{N} \cup\{\infty\})^{d}$.

$$
C=\left\{\left.\binom{\infty}{n} \right\rvert\, n \in \mathbb{N}\right\}
$$

We compute the sum of vectors over the whole infinite word:

- Component is ∞ if the series diverges.
- Example: run on abbaba ${ }^{\omega}$ yields $(\infty, 3)$.

Accept if an acc. state is seen infinitely often and vector is in C.

- Here: accepts α if $|\alpha|_{b}<\infty$.

Rechability-regular PA

Next, we define reachability-regular PA:

Accept an infinite word if

- it has a finite prefix that is accepted by the underlying PA and
- an infinite state is seen infinitely often.

Rechability-regular PA

Next, we define reachability-regular PA:

Accept an infinite word if

- it has a finite prefix that is accepted by the underlying PA and
- an infinite state is seen infinitely often.

Here: accepts $w \beta$ if $|\beta|_{b}=\infty,|w|_{a} \geq|w|_{b}$ and w ends with b.

Bringing them together

Lemma

The following are equivalent for all ω-languages $L \subseteq \Sigma^{\omega}$.

1. L is limit PA-recognizable.
2. L is reachability-regular.
3. L is in $\mathcal{L}_{\mathrm{PA}, \mathrm{Reg}}^{\omega}$.

Side-product: for every limit PA there is an equivalent limit PA whose semi-linear set C does not use ∞, that is $C \subseteq \mathbb{N}^{d}$.

We observe:

- If L is reachability PA-recognizable, then L is in $\mathcal{L}_{\mathrm{PA}, \mathrm{Reg}}^{\omega}$.
- If L is in $\mathcal{L}_{\mathrm{PA}, \text { Reg }}^{\omega}$, then L is Büchi PA-recognizable.

Overview

safety PA

Reset PA

Finally, we define reset PA:

- Whenever an acc. state is visited, the value must be in C.
- Then the counters are reset. Accept if there are ∞ resets.

Reset PA

Finally, we define reset PA:

$$
\begin{gathered}
\stackrel{\uparrow}{ }+\underset{\left.\left.\binom{1}{1} z \right\rvert\, z \in \mathbb{N}\right\}}{ }
\end{gathered}
$$

- Whenever an acc. state is visited, the value must be in C.
- Then the counters are reset. Accept if there are ∞ resets.

Here: recognizes $\left\{a^{n} b^{n} \mid n \geq 1\right\}^{\omega}$

Reset PA

Reset PA are closed under ${ }^{\omega}$.

- Reset PA recognize a strict superset of $\mathcal{L}_{\mathrm{PA}, \mathrm{PA}}^{\omega}$.
- Still NP-complete emptiness problem.

Automata characterizations of $\mathcal{L}_{\text {PA,PA }}^{\omega}$ and $\mathcal{L}_{\text {Reg,PA }}^{\omega}$

Restricting reset PA yield an automata characterization of $\mathcal{L}_{\mathrm{PA}, \mathrm{PA}}^{\omega}$.

Automata characterizations of $\mathcal{L}_{\text {PA,PA }}^{\omega}$ and $\mathcal{L}_{\text {Reg,PA }}^{\omega}$

Restricting reset PA yield an automata characterization of $\mathcal{L}_{\mathrm{PA}, \mathrm{PA}}^{\omega}$.

We consider the condensation (dag of connected components).

Automata characterizations of $\mathcal{L}_{\text {PA,PA }}^{\omega}$ and $\mathcal{L}_{\text {Reg,PA }}^{\omega}$

Restricting reset PA yield an automata characterization of $\mathcal{L}_{\mathrm{PA}, \mathrm{PA}}^{\omega}$.

We consider the condensation (dag of connected components).

- If accepting states appear only in leaves, and there is at most one accepting state per leaf, we exactly capture $\mathcal{L}_{\mathrm{PA}, \mathrm{PA}}^{\omega}$.

Automata characterizations of $\mathcal{L}_{\mathrm{PA}, \mathrm{PA}}^{\omega}$ and $\mathcal{L}_{\text {Reg,PA }}^{\omega}$

Restricting reset PA yield an automata characterization of $\mathcal{L}_{\mathrm{PA}, \mathrm{PA}}^{\omega}$.

We consider the condensation (dag of connected components).

- If accepting states appear only in leaves, and there is at most one accepting state per leaf, we exactly capture $\mathcal{L}_{\mathrm{PA}, \mathrm{PA}}^{\omega}$.
- A further restrictions yields a characteriztion of $\mathcal{L}_{\text {Reg,PA }}^{\omega}$.

Overview

$(*)$ suitable graph theoretical restrictions

Blind counter machines vs Büchi PA

Blind counter machines on infinite words [Fernau \& Stiebe, 2007]

- Transitions are equipped with (possibly negative) integers.
- Accept if an acc. state is seen ∞ often while counters are 0 .
- Silent transitions (ε-transitions) are allowed.

Blind counter machines vs Büchi PA

Blind counter machines on infinite words [Fernau \& Stiebe, 2007]

- Transitions are equipped with (possibly negative) integers.
- Accept if an acc. state is seen ∞ often while counters are 0 .
- Silent transitions (ε-transitions) are allowed.

Büchi PA [Guha et al., 2022]

- Syntactically equivalent to PA.
- Accept if an acc. state is seen ∞ often while counters are in C.
- Silent transitions (ε-transitions) are not allowed.

Blind counter machines vs Büchi PA

Blind counter machines on infinite words [Fernau \& Stiebe, 2007]

- Transitions are equipped with (possibly negative) integers.
- Accept if an acc. state is seen ∞ often while counters are 0 .
- Silent transitions (ε-transitions) are allowed.

Büchi PA [Guha et al., 2022]

- Syntactically equivalent to PA.
- Accept if an acc. state is seen ∞ often while counters are in C.
- Silent transitions (ε-transitions) are not allowed.

We show that they are equivalent, answering an open question.

- Technical part: removal of ε-transitions (thanks Georg!)

Elimination of ε-transitions in other models

Natural question: which models do admit ε-elimination?

- Almost all, the exception being safety and co-Büchi PA.
- Often a direct consequence of characterization lemmas (finite word PA admit ε-elimination).
- Sometimes more technical, e.g. for reset PA.

Elimination of ε-transitions in other models

Natural question: which models do admit ε-elimination?

- Almost all, the exception being safety and co-Büchi PA.
- Often a direct consequence of characterization lemmas (finite word PA admit ε-elimination).
- Sometimes more technical, e.g. for reset PA.

For safety and co-Büchi PA, we can use ε-transitions to encode the acceptance condition of Büchi automata.

- Hence, these models recognize all ω-regular languages.

Conclusion

$(*)$ suitable graph theoretical restrictions

Conclusion

$(*)$ suitable graph theoretical restrictions

