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• Is the first value at least twice the second value?
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Parikh automata

A Parikh automaton (PA) is a tuple (A,C ).
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Accept if

• there is an accepting run, and

• summed up vector v is contained in C .

Recognized language: L(A,C ) =

3



Parikh automata

A Parikh automaton (PA) is a tuple (A,C ).

q0 q1

a,

(
1
0

)
a,

(
1
0

) b,

(
0
1

)

A C =

{(
1
1

)
z | z ∈ N

}

Accept if

• there is an accepting run, and

• summed up vector v is contained in C .

Recognized language: L(A,C ) = ?
3



Parikh automata

A Parikh automaton (PA) is a tuple (A,C ).

q0 q1

a,

(
1
0

)
a,

(
1
0

) b,

(
0
1

)

A C =

{(
1
1

)
z | z ∈ N

}

Accept if

• there is an accepting run, and

• summed up vector v is contained in C .

Recognized language: L(A,C ) = {anbn | n ≥ 1}.
3



History of Parikh automata

Studied as a tool to decide an existential fragment of (W)MSO

with cardinality constraints [Klaedtke & Ruess, 2003].

Equivalent models:

• Blind-counter automata [Greibach, 1978].

• Weighted automata over (Zk ,+, 0) [Mitrana & Stiebe, 2001].

• Reversal-bounded multicounter machines [Ibarra, 1978].

These models can be translated into each other in logspace

[Baumann et al., 2023].
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To infinity and beyond



Reminder: Büchi automata

Recall Büchi automata which operate on infinite words.
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Input: infinite words α1α2α3 . . .

Acceptance: Visit accepting state infinitely often.

Input: ababab . . . Run:

Büchi automata recognize the ω-regular languages.
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PA on infinite words

How to define PA on infinite words?

• Answered independently by Guha et al., 2022.

• They proposed the following models:

rechability PA Büchi PA

safety PA co-Büchi PA

ω-regular
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Büchi’s Theorem and friends?

Büchi’s Theorem

A language L ⊆ Σω is ω-regular if and only if there are regular

languages U1,V1, . . . ,Un,Vn ⊆ Σ∗ with L = U1V
ω
1 ∪· · ·∪UnV

ω
n .

What happens if we plug in PA-recognizable languages?

• Lω
Reg,Reg : regular Ui and Vi .

• Lω
Reg,PA : regular Ui and PA-recognizable Vi .

• Lω
PA,Reg : PA-recognizable Ui and regular Vi .

• Lω
PA,PA : PA-recognizable Ui and Vi .

Lemma [Guha et al., 2022]

Büchi PA recognize a strict subset of Lω
PA,PA.
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Limit PA

First, we define limit PA:

• Here, we consider semi-linear sets over (N ∪ {∞})d .

q0

a,

(
1
0

)
b,

(
0
1

) C =

{(
∞
n

)
| n ∈ N

}

We compute the sum of vectors over the whole infinite word:

• Component is ∞ if the series diverges.

• Example: run on abbabaω yields (∞, 3).

Accept if an acc. state is seen infinitely often and vector is in C .

▶ Here: accepts α if |α|b < ∞.
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Rechability-regular PA

Next, we define reachability-regular PA:
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Accept an infinite word if

• it has a finite prefix that is accepted by the underlying PA and

• an infinite state is seen infinitely often.

Here: accepts wβ if |β|b = ∞, |w |a ≥ |w |b and w ends with b.
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Bringing them together

Lemma

The following are equivalent for all ω-languages L ⊆ Σω.

1. L is limit PA-recognizable.

2. L is reachability-regular.

3. L is in Lω
PA,Reg.

Side-product: for every limit PA there is an equivalent limit PA

whose semi-linear set C does not use ∞, that is C ⊆ Nd .

We observe:

• If L is reachability PA-recognizable, then L is in Lω
PA,Reg.

• If L is in Lω
PA,Reg, then L is Büchi PA-recognizable.
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Overview

rechability PA Büchi PA

safety PA co-Büchi PA

ω-regular

reachability-regular PA

= limit PA = Lω
PA,Reg
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Reset PA

Finally, we define reset PA:
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• Whenever an acc. state is visited, the value must be in C .

• Then the counters are reset. Accept if there are ∞ resets.

Here: recognizes {anbn | n ≥ 1}ω
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Reset PA

Reset PA are closed under ·ω.

▶ Reset PA recognize a strict superset of Lω
PA,PA.

▶ Still NP-complete emptiness problem.

rechability PA Büchi PA

safety PA co-Büchi PA

ω-regular

reachability-regular PA

= limit PA = Lω
PA,Reg

reset PA

Lω
PA,PA
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Automata characterizations of Lω
PA,PA and Lω

Reg,PA

Restricting reset PA yield an automata characterization of Lω
PA,PA.
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We consider the condensation (dag of connected components).

• If accepting states appear only in leaves, and there is at most

one accepting state per leaf, we exactly capture Lω
PA,PA.

• A further restrictions yields a characteriztion of Lω
Reg,PA.

14



Automata characterizations of Lω
PA,PA and Lω

Reg,PA

Restricting reset PA yield an automata characterization of Lω
PA,PA.

q0

ℓ1ℓ2 r1 r2

a,

(
1
0

)
a,

(
1
0

)

a,

(
1
0

)
b,

(
0
1

)
a,

(
1
0

) b,

(
0
0

)

We consider the condensation (dag of connected components).

• If accepting states appear only in leaves, and there is at most

one accepting state per leaf, we exactly capture Lω
PA,PA.

• A further restrictions yields a characteriztion of Lω
Reg,PA.

14



Automata characterizations of Lω
PA,PA and Lω

Reg,PA

Restricting reset PA yield an automata characterization of Lω
PA,PA.

q0

ℓ1ℓ2 r1 r2

a,

(
1
0

)
a,

(
1
0

)

a,

(
1
0

)
b,

(
0
1

)
a,

(
1
0

) b,

(
0
0

)

We consider the condensation (dag of connected components).

• If accepting states appear only in leaves, and there is at most

one accepting state per leaf, we exactly capture Lω
PA,PA.

• A further restrictions yields a characteriztion of Lω
Reg,PA.

14



Automata characterizations of Lω
PA,PA and Lω

Reg,PA

Restricting reset PA yield an automata characterization of Lω
PA,PA.

q0

ℓ1ℓ2 r1 r2

a,

(
1
0

)
a,

(
1
0

)

a,

(
1
0

)
b,

(
0
1

)
a,

(
1
0

) b,

(
0
0

)

We consider the condensation (dag of connected components).

• If accepting states appear only in leaves, and there is at most

one accepting state per leaf, we exactly capture Lω
PA,PA.

• A further restrictions yields a characteriztion of Lω
Reg,PA.

14



Overview

rechability PA Büchi PA

safety PA co-Büchi PA

ω-regular

reachability-regular PA

= limit PA = Lω
PA,Reg

reset PA

reset PA (∗) = Lω
PA,PA

reset PA (∗) = Lω
Reg,PA

(∗) suitable graph theoretical restrictions
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Blind counter machines vs Büchi PA

Blind counter machines on infinite words [Fernau & Stiebe, 2007]

• Transitions are equipped with (possibly negative) integers.

• Accept if an acc. state is seen ∞ often while counters are 0.

• Silent transitions (ε-transitions) are allowed.

Büchi PA [Guha et al., 2022]

• Syntactically equivalent to PA.

• Accept if an acc. state is seen ∞ often while counters are inC.

• Silent transitions (ε-transitions) are not allowed.

We show that they are equivalent, answering an open question.

• Technical part: removal of ε-transitions (thanks Georg!)
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Elimination of ε-transitions in other models

Natural question: which models do admit ε-elimination?

▶ Almost all, the exception being safety and co-Büchi PA.

▶ Often a direct consequence of characterization lemmas

(finite word PA admit ε-elimination).

▶ Sometimes more technical, e.g. for reset PA.

For safety and co-Büchi PA, we can use ε-transitions to encode the

acceptance condition of Büchi automata.

▶ Hence, these models recognize all ω-regular languages.
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▶ Often a direct consequence of characterization lemmas

(finite word PA admit ε-elimination).

▶ Sometimes more technical, e.g. for reset PA.
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Conclusion

rechability PA Büchi PA

safety PA co-Büchi PA

ω-regular

reachability-regular PA

= limit PA = Lω
PA,Reg

reset PA

reset PA (∗) = Lω
PA,PA

reset PA (∗) = Lω
Reg,PA

ε-safety PA ε-co-Büchi PA

(∗) suitable graph theoretical restrictions
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rechability PA Büchi PA

safety PA co-Büchi PA

ω-regular

reachability-regular PA

= limit PA = Lω
PA,Reg

reset PA

reset PA (∗) = Lω
PA,PA

reset PA (∗) = Lω
Reg,PA

ε-safety PA ε-co-Büchi PA

(∗) suitable graph theoretical restrictions

Thank
you!
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