Rational trace relations ${ }^{1}$

Dietrich Kuske

Technische Universität Ilmenau
${ }^{1}$ Submitted to FSTTCS 2023

A class of rational trace relations closed under composition ${ }^{1}$

Dietrich Kuske

Technische Universität IImenau

Very classical setting: rational languages

Very classical setting: rational languages

$L \subseteq \Gamma^{*}$ rational iff constructible from finite languages by union \cup, concatenation •, and iteration *.

Very classical setting: rational languages

$L \subseteq \Gamma^{*}$ rational iff constructible from finite languages by union \cup, concatenation •, and iteration *.
very much loved concept

Very classical setting: rational languages

$L \subseteq \Gamma^{*}$ rational iff constructible from finite languages by union \cup, concatenation •, and iteration *.
very much loved concept

1. alternative characterisations:
combinatorial
logical
algebraic

Very classical setting: rational languages

$L \subseteq \Gamma^{*}$ rational iff constructible from finite languages by union \cup, concatenation •, and iteration *.
very much loved concept

1. alternative characterisations:
combinatorial
logical
algebraic
2. "everything" is decidable: emptiness, inclusion, ...

Very classical setting: rational languages

$L \subseteq \Gamma^{*}$ rational iff constructible from finite languages by union \cup, concatenation •, and iteration *.
very much loved concept

1. alternative characterisations:
combinatorial
logical
algebraic
2. "everything" is decidable: emptiness, inclusion, ...
3. closure properties: complementation intersection
(inverse) homomorphisms rational transductions ...

Very classical setting: rational languages

$L \subseteq \Gamma^{*}$ rational iff constructible from finite languages by union \cup, concatenation •, and iteration *.
very much loved concept

1. alternative characterisations:
combinatorial
logical
algebraic
2. "everything" is decidable: emptiness, inclusion, ...
3. closure properties: complementation intersection
(inverse) homomorphisms rational transductions
4. applications:
parsing
model checking
...

Very classical setting: rational languages

$L \subseteq \Gamma^{*}$ rational iff constructible from finite languages by union \cup, concatenation •, and iteration *.
very much loved concept

1. alternative characterisations:
combinatorial
logical
algebraic
...
2. "everything" is decidable: emptiness, inclusion, ...
3. closure properties: complementation intersection
(inverse) homomorphisms rational transductions
4. applications:
parsing
model checking
last, but not least: training ground for future computer scientists

Very classical setting: rational languages

$L \subseteq \Gamma^{*}$ rational iff constructible from finite languages by union \cup, concatenation •, and iteration *.
very much loved concept

1. alternative characterisations:
combinatorial
logical
algebraic
...
2. "everything" is decidable: emptiness, inclusion, ...
3. closure properties: complementation intersection
(inverse) homomorphisms rational transductions
4. applications: parsing model checking
last, but not least: training ground for future computer scientists (well: theoreticians)

Classical setting: rational relations

($\hat{=}$ rational transductions)

Classical setting: rational relations

($\hat{=}$ rational transductions)

$R \subseteq \Gamma^{*} \times \Gamma^{*}$ rational iff constructible from finite relations by union \cup, concatenation \cdot, and iteration *.

Classical setting: rational relations

($\hat{=}$ rational transductions)

$R \subseteq \Gamma^{*} \times \Gamma^{*}$ rational iff constructible from finite relations by union \cup, concatenation \cdot, and iteration *. much loved concept:

Classical setting: rational relations

($\hat{=}$ rational transductions)

$R \subseteq \Gamma^{*} \times \Gamma^{*}$ rational iff constructible from finite relations by union \cup, concatenation \cdot, and iteration *.
much loved concept:

1. alternative characterisations:

2-tape automata, homomorphic image of regular language ("Nivat's theorem")

Classical setting: rational relations

($\hat{=}$ rational transductions)

$R \subseteq \Gamma^{*} \times \Gamma^{*}$ rational iff constructible from finite relations by union \cup, concatenation \cdot, and iteration *.
much loved concept:

1. alternative characterisations:

2-tape automata, homomorphic image of regular language ("Nivat's theorem")
2. closure properties 1 :
(inverse) homomorphisms, composition \circ, inverse R^{-1}, \ldots

Classical setting: rational relations

($\hat{=}$ rational transductions)

$R \subseteq \Gamma^{*} \times \Gamma^{*}$ rational iff constructible from finite relations by union \cup, concatenation \cdot, and iteration *.
much loved concept:

1. alternative characterisations:

2-tape automata, homomorphic image of regular language ("Nivat's theorem")
2. closure properties 1 :
(inverse) homomorphisms, composition \circ, inverse R^{-1}, \ldots
3. closure properties 2 :
L regular $\Rightarrow L^{R}=\{v \mid \exists u \in L:(u, v) \in R\}$ and ${ }^{R} L=\{u \mid \exists v \in L:(u, v) \in R\}$ regular
(similarly for many other language classes)

Classical setting: rational relations

($\hat{=}$ rational transductions)

$R \subseteq \Gamma^{*} \times \Gamma^{*}$ rational iff constructible from finite relations by union \cup, concatenation \cdot, and iteration *.
much loved concept:
4. closure properties 2 :

$$
\begin{aligned}
L \text { regular } \Rightarrow L^{R} & =\{v \mid \exists u \in L:(u, v) \in R\} \text { and } \\
R^{R} & =\{u \mid \exists v \in L:(u, v) \in R\} \text { regular }
\end{aligned}
$$

Classical setting: rational relations

($\hat{=}$ rational transductions)

$R \subseteq \Gamma^{*} \times \Gamma^{*}$ rational iff constructible from finite relations by union \cup, concatenation \cdot, and iteration *.
much loved concept:
4. closure properties 2:

$$
\begin{aligned}
L \text { regular } \Rightarrow L^{R} & =\{v \mid \exists u \in L:(u, v) \in R\} \text { and } \\
R^{R} & =\{u \mid \exists v \in L:(u, v) \in R\} \text { regular }
\end{aligned}
$$

5. applications: automatic structures, infinite state model checking

Classical setting: rational relations

($\hat{=}$ rational transductions)

$R \subseteq \Gamma^{*} \times \Gamma^{*}$ rational iff constructible from finite relations by union \cup, concatenation \cdot, and iteration *.
much loved concept:
4. closure properties 2:

$$
\begin{aligned}
L \text { regular } \Rightarrow L^{R} & =\{v \mid \exists u \in L:(u, v) \in R\} \text { and } \\
R^{R} & =\{u \mid \exists v \in L:(u, v) \in R\} \text { regular }
\end{aligned}
$$

5. applications:
automatic structures, infinite state model checking
in particular: P PDS ($=$ PDA over $\Sigma=\{a\}$)

Classical setting: rational relations

($\hat{=}$ rational transductions)

$R \subseteq \Gamma^{*} \times \Gamma^{*}$ rational iff constructible from finite relations by union \cup, concatenation \cdot, and iteration *.
much loved concept:
4. closure properties 2:

$$
\begin{aligned}
L \text { regular } \Rightarrow L^{R} & =\{v \mid \exists u \in L:(u, v) \in R\} \text { and } \\
R^{R} & =\{u \mid \exists v \in L:(u, v) \in R\} \text { regular }
\end{aligned}
$$

5. applications:
automatic structures, infinite state model checking
in particular: P PDS (=PDA over $\Sigma=\{a\}$)
$\Longrightarrow R:=\left\{(u, v) \mid(\iota, u) \vdash^{*}(f, v)\right\}$ rational (Caucal '92)

Classical setting: rational relations

(气 $\xlongequal{\text { rational transductions) }}$

$R \subseteq \Gamma^{*} \times \Gamma^{*}$ rational iff constructible from finite relations by union \cup, concatenation \cdot, and iteration *.
much loved concept:
4. closure properties 2:

$$
\begin{aligned}
L \text { regular } \Rightarrow L^{R} & =\{v \mid \exists u \in L:(u, v) \in R\} \text { and } \\
R^{R} & =\{u \mid \exists v \in L:(u, v) \in R\} \text { regular }
\end{aligned}
$$

5. applications:
automatic structures, infinite state model checking
in particular: P PDS ($=$ PDA over $\Sigma=\{a\}$)
$\Longrightarrow R:=\left\{(u, v) \mid(\iota, u) \vdash^{*}(f, v)\right\}$ rational (Caucal '92)
$\Longrightarrow L^{R}$ and ${ }^{R} L$ regular

Classical setting: rational relations

($\xlongequal[=]{ }$ rational transductions)

$R \subseteq \Gamma^{*} \times \Gamma^{*}$ rational iff constructible from finite relations by union \cup, concatenation \cdot, and iteration *.
much loved concept:
4. closure properties 2 :

$$
\begin{aligned}
L \text { regular } \Rightarrow L^{R} & =\{v \mid \exists u \in L:(u, v) \in R\} \text { and } \\
R^{R} & =\{u \mid \exists v \in L:(u, v) \in R\} \text { regular }
\end{aligned}
$$

5. applications:
automatic structures, infinite state model checking
in particular: P PDS (=PDA over $\Sigma=\{a\}$)
$\Longrightarrow R:=\left\{(u, v) \mid(\iota, u) \vdash^{*}(f, v)\right\}$ rational (Caucal '92)
$\Longrightarrow L^{R}$ and ${ }^{R} L$ regular
i.e., forwards and backwards reachability preserve regularity

Classical setting: rational relations

($\hat{=}$ rational transductions)

$R \subseteq \Gamma^{*} \times \Gamma^{*}$ rational iff constructible from finite relations by union \cup, concatenation \cdot, and iteration *.
much loved concept:
4. closure properties 2:
L regular $\Rightarrow L^{R}=\{v \mid \exists u \in L:(u, v) \in R\}$ and

$$
{ }^{R} L=\{u \mid \exists v \in L:(u, v) \in R\} \text { regular }
$$

5. applications:
automatic structures, infinite state model checking
in particular: P PDS (=PDA over $\Sigma=\{a\}$)
$\Longrightarrow R:=\left\{(u, v) \mid(\iota, u) \vdash^{*}(f, v)\right\}$ rational (Caucal '92)
$\Longrightarrow L^{R}$ and ${ }^{R} L$ regular
i.e., forwards and backwards reachability preserve regularity
\Longrightarrow reachability of regular sets of configurations decidable

Today's setting

Today's setting

replace free monoid Γ^{*} by trace monoid \mathbb{M}.

Today's setting

replace free monoid Γ^{*} by trace monoid \mathbb{M}.
Definition

- independence alphabet: (Γ, I) with $I \subseteq \Gamma^{*}$ symmetric

Today's setting

replace free monoid Γ^{*} by trace monoid \mathbb{M}.
Definition

- independence alphabet: (Γ, I) with $I \subseteq \Gamma^{*}$ symmetric
- \sim : least congruence on Γ^{*} with $a b \sim b a$ for all $(a, b) \in I$

Today's setting

replace free monoid Γ^{*} by trace monoid \mathbb{M}.
Definition

- independence alphabet: (Γ, I) with $I \subseteq \Gamma^{*}$ symmetric
- \sim : least congruence on Γ^{*} with $a b \sim b a$ for all $(a, b) \in I$ i.e. $u \sim v$ iff u can be re-arranged into v by transposing neighboring independent letters

Today's setting

replace free monoid Γ^{*} by trace monoid \mathbb{M}.

Definition

- independence alphabet: (Γ, I) with $I \subseteq \Gamma^{*}$ symmetric
- \sim : least congruence on Γ^{*} with $a b \sim b a$ for all $(a, b) \in I$ i.e. $u \sim v$ iff u can be re-arranged into v by transposing neighboring independent letters
e.g. (with $(a, b) \in I$ and $(a, c) \notin I)$: aabcba \sim abacab \sim baacab \nsim baaacb

Today's setting

replace free monoid Γ^{*} by trace monoid \mathbb{M}.

Definition

- independence alphabet: (Γ, I) with $I \subseteq \Gamma^{*}$ symmetric
- \sim : least congruence on Γ^{*} with $a b \sim b a$ for all $(a, b) \in I$ i.e. $u \sim v$ iff u can be re-arranged into v by transposing neighboring independent letters
e.g. (with $(a, b) \in I$ and $(a, c) \notin I)$: aabcba \sim abacab \sim baacab \nsim baaacb
- trace monoid $\mathbb{M}=\Gamma^{*} / \sim$:
elements are equivalence classes $[u$] of words u

Today's setting

replace free monoid Γ^{*} by trace monoid \mathbb{M}.

Definition

- independence alphabet: (Γ, I) with $I \subseteq \Gamma^{*}$ symmetric
- \sim : least congruence on Γ^{*} with $a b \sim b a$ for all $(a, b) \in I$ i.e. $u \sim v$ iff u can be re-arranged into v by transposing neighboring independent letters
e.g. (with $(a, b) \in I$ and $(a, c) \notin I)$: aabcba $\sim a b a c a b \sim$ baacab \nsim baaacb
- trace monoid $\mathbb{M}=\Gamma^{*} / \sim$:
elements are equivalence classes $[u$] of words u concatenation: $[u] \cdot[v]:=[u v]$

Today's setting

replace free monoid Γ^{*} by trace monoid \mathbb{M}.

Definition

- independence alphabet: (Γ, I) with $I \subseteq \Gamma^{*}$ symmetric
- \sim : least congruence on Γ^{*} with $a b \sim b a$ for all $(a, b) \in I$ i.e. $u \sim v$ iff u can be re-arranged into v by transposing neighboring independent letters
e.g. (with $(a, b) \in I$ and $(a, c) \notin I)$:

$$
a a b c b a \sim a b a c a b \sim b a a c a b \nsim b a a a c b
$$

- trace monoid $\mathbb{M}=\Gamma^{*} / \sim$:
elements are equivalence classes $[u$] of words u concatenation: $[u] \cdot[v]:=[u v]$ neutral element: $[u] \cdot[\varepsilon]=[\varepsilon] \cdot[u]=[u]$

Today's setting

replace free monoid Γ^{*} by trace monoid \mathbb{M}.

Definition

- independence alphabet: (Γ, I) with $I \subseteq \Gamma^{*}$ symmetric
- \sim : least congruence on Γ^{*} with $a b \sim b a$ for all $(a, b) \in I$ i.e. $u \sim v$ iff u can be re-arranged into v by transposing neighboring independent letters
e.g. (with $(a, b) \in I$ and $(a, c) \notin I)$: aabcba $\sim a b a c a b \sim$ baacab \nsim baaacb
- trace monoid $\mathbb{M}=\Gamma^{*} / \sim$:
elements are equivalence classes $[u$] of words u concatenation: $[u] \cdot[v]:=[u v]$ neutral element: $[u] \cdot[\varepsilon]=[\varepsilon] \cdot[u]=[u]$
- $\mathcal{R} \subseteq \mathbb{M} \times \mathbb{M}$ rational iff constructible from finite relations by union \cup, concatenation \cdot, and iteration *.

Today's question

Definition

$\mathcal{R} \subseteq \mathbb{M} \times \mathbb{M}$ rational iff constructible from finite relations by union
\cup, concatenation \cdot, and iteration *.

Today's question

Definition

$\mathcal{R} \subseteq \mathbb{M} \times \mathbb{M}$ rational iff constructible from finite relations by union
\cup, concatenation \cdot, and iteration *.
General question
Which of the properties of rational word relations survive this abstraction?

Today's question

Definition

$\mathcal{R} \subseteq \mathbb{M} \times \mathbb{M}$ rational iff constructible from finite relations by union
\cup, concatenation \cdot, and iteration *.

General question

Which of the properties of rational word relations survive this abstraction?

Example
$(a, b) \notin I,(c, d) \in I$

$$
\mathcal{R}_{1}=\{([a],[c])\}^{+} \cdot\{([b],[d])\}^{+}=\left\{\left(\left[a^{m} b^{n}\right],\left[c^{m} d^{n}\right]\right) \mid m, n \geq 1\right.
$$

Today's question

Definition

$\mathcal{R} \subseteq \mathbb{M} \times \mathbb{M}$ rational iff constructible from finite relations by union
\cup, concatenation \cdot, and iteration *.

General question

Which of the properties of rational word relations survive this abstraction?

Example
$(a, b) \notin I,(c, d) \in I$

$$
\begin{aligned}
& \mathcal{R}_{1}=\{([a],[c])\}^{+} \cdot\{([b],[d])\}^{+}=\left\{\left(\left[a^{m} b^{n}\right],\left[c^{m} d^{n}\right]\right) \mid m, n \geq 1\right. \\
& \mathcal{R}_{2}=\left\{\left(\left[d^{n} c^{m}\right],\left[b^{n} a^{m}\right]\right) \mid m, n \geq 1\right\}
\end{aligned}
$$

Today's question

Definition

$\mathcal{R} \subseteq \mathbb{M} \times \mathbb{M}$ rational iff constructible from finite relations by union
\cup, concatenation \cdot, and iteration *.

General question

Which of the properties of rational word relations survive this abstraction?

Example
$(a, b) \notin I,(c, d) \in I$

$$
\begin{aligned}
\mathcal{R}_{1} & =\{([a],[c])\}^{+} \cdot\{([b],[d])\}^{+}=\left\{\left(\left[a^{m} b^{n}\right],\left[c^{m} d^{n}\right]\right) \mid m, n \geq 1\right. \\
\mathcal{R}_{2} & =\left\{\left(\left[d^{n} c^{m}\right],\left[b^{n} a^{m}\right]\right) \mid m, n \geq 1\right\} \\
& =\left\{\left(\left[c^{m} d^{n}\right],\left[b^{n} a^{m}\right]\right) \mid m, n \geq 1\right\}
\end{aligned}
$$

Today's question

Definition

$\mathcal{R} \subseteq \mathbb{M} \times \mathbb{M}$ rational iff constructible from finite relations by union
\cup, concatenation \cdot, and iteration *.

General question

Which of the properties of rational word relations survive this abstraction?

Example

$$
\begin{aligned}
(a, b) \notin I, & (c, d) \in I \\
\mathcal{R}_{1} & =\{([a],[c])\}^{+} \cdot\{([b],[d])\}^{+}=\left\{\left(\left[a^{m} b^{n}\right],\left[c^{m} d^{n}\right]\right) \mid m, n \geq 1\right. \\
\mathcal{R}_{2} & =\left\{\left(\left[d^{n} c^{m}\right],\left[b^{n} a^{m}\right]\right) \mid m, n \geq 1\right\} \\
& =\left\{\left(\left[c^{m} d^{n}\right],\left[b^{n} a^{m}\right]\right) \mid m, n \geq 1\right\} \\
\mathcal{R}_{1} \circ \mathcal{R}_{2} & =\left\{\left(\left[a^{m} b^{n}\right],\left[b^{n} a^{m}\right]\right) \mid m, n \geq 1\right\}
\end{aligned}
$$

Today's question

Definition

$\mathcal{R} \subseteq \mathbb{M} \times \mathbb{M}$ rational iff constructible from finite relations by union
\cup, concatenation \cdot, and iteration *.

General question

Which of the properties of rational word relations survive this abstraction?

Example

$$
\begin{aligned}
(a, b) \notin I, & (c, d) \in I \\
\mathcal{R}_{1} & =\{([a],[c])\}^{+} \cdot\{([b],[d])\}^{+}=\left\{\left(\left[a^{m} b^{n}\right],\left[c^{m} d^{n}\right]\right) \mid m, n \geq 1\right. \\
\mathcal{R}_{2} & =\left\{\left(\left[d^{n} c^{m}\right],\left[b^{n} a^{m}\right]\right) \mid m, n \geq 1\right\} \\
& =\left\{\left(\left[c^{m} d^{n}\right],\left[b^{n} a^{m}\right]\right) \mid m, n \geq 1\right\} \\
\mathcal{R}_{1} \circ \mathcal{R}_{2} & =\left\{\left(\left[a^{m} b^{n}\right],\left[b^{n} a^{m}\right]\right) \mid m, n \geq 1\right\} \text { not rational © }
\end{aligned}
$$

Analysis of counter example
$(a, b) \notin I,(c, d) \in I$

$$
\begin{aligned}
& \mathcal{R}_{1}=\left\{\left(\left[a^{m} b^{n}\right],\left[c^{m} d^{n}\right]\right) \mid m, n \geq 1\right\} \\
& \mathcal{R}_{2}=\left\{\left(\left[d^{n} c^{m}\right],\left[b^{n} a^{m}\right]\right) \mid m, n \geq 1\right\}
\end{aligned}
$$

$\mathcal{R}_{1} \circ \mathcal{R}_{2} \neq \emptyset$ not rational

Analysis of counter example
$(a, b) \notin I,(c, d) \in I$

$$
\begin{aligned}
& \mathcal{R}_{1}=\left\{\left(\left[a^{m} b^{n}\right],\left[c^{m} d^{n}\right]\right) \mid m, n \geq 1\right\} \\
& \mathcal{R}_{2}=\left\{\left(\left[d^{n} c^{m}\right],\left[b^{n} a^{m}\right]\right) \mid m, n \geq 1\right\}
\end{aligned}
$$

$\mathcal{R}_{1} \circ \mathcal{R}_{2} \neq \emptyset$ not rational

- Observation: $\mathcal{R} \subseteq \mathbb{M}^{2}$ rational iff there exists $R \subseteq \Sigma^{*} \times \Sigma^{*}$ rational s.t. $\mathcal{R}=[R]:=\{([u],[v]) \mid(u, v) \in R\}$.

Analysis of counter example
$(a, b) \notin I,(c, d) \in I$

$$
\begin{aligned}
& \mathcal{R}_{1}=\left\{\left(\left[a^{m} b^{n}\right],\left[c^{m} d^{n}\right]\right) \mid m, n \geq 1\right\} \\
& \mathcal{R}_{2}=\left\{\left(\left[d^{n} c^{m}\right],\left[b^{n} a^{m}\right]\right) \mid m, n \geq 1\right\}
\end{aligned}
$$

$\mathcal{R}_{1} \circ \mathcal{R}_{2} \neq \emptyset$ not rational

- Observation: $\mathcal{R} \subseteq \mathbb{M}^{2}$ rational iff there exists $R \subseteq \Sigma^{*} \times \Sigma^{*}$ rational s.t. $\mathcal{R}=[R]:=\{([u],[v]) \mid(u, v) \in R\}$.
- here $R_{1}=\left\{\left(a^{m} b^{n}, c^{m} d^{n}\right) \mid m, n \geq 1\right\}$

$$
R_{2}=\left\{\left(d^{n} c^{m}, b^{n} a^{m}\right) \mid m, n \geq 1\right\}
$$

Analysis of counter example
$(a, b) \notin I,(c, d) \in I$

$$
\begin{aligned}
& \mathcal{R}_{1}=\left\{\left(\left[a^{m} b^{n}\right],\left[c^{m} d^{n}\right]\right) \mid m, n \geq 1\right\} \\
& \mathcal{R}_{2}=\left\{\left(\left[d^{n} c^{m}\right],\left[b^{n} a^{m}\right]\right) \mid m, n \geq 1\right\}
\end{aligned}
$$

$\mathcal{R}_{1} \circ \mathcal{R}_{2} \neq \emptyset$ not rational

- Observation: $\mathcal{R} \subseteq \mathbb{M}^{2}$ rational iff there exists $R \subseteq \Sigma^{*} \times \Sigma^{*}$ rational s.t. $\mathcal{R}=[R]:=\{([u],[v]) \mid(u, v) \in R\}$.
- here $R_{1}=\left\{\left(a^{m} b^{n}, c^{m} d^{n}\right) \mid m, n \geq 1\right\}$
$R_{2}=\left\{\left(d^{n} c^{m}, b^{n} a^{m}\right) \mid m, n \geq 1\right\}$
$\Longrightarrow \exists t, u, u^{\prime}, v^{\prime} \in \Sigma^{*}: t R_{1} u \sim u^{\prime} R_{2} v^{\prime}$ and $u \neq u^{\prime}$

Analysis of counter example
$(a, b) \notin I,(c, d) \in I$

$$
\begin{aligned}
& \mathcal{R}_{1}=\left\{\left(\left[a^{m} b^{n}\right],\left[c^{m} d^{n}\right]\right) \mid m, n \geq 1\right\} \\
& \mathcal{R}_{2}=\left\{\left(\left[d^{n} c^{m}\right],\left[b^{n} a^{m}\right]\right) \mid m, n \geq 1\right\}
\end{aligned}
$$

$\mathcal{R}_{1} \circ \mathcal{R}_{2} \neq \emptyset$ not rational

- Observation: $\mathcal{R} \subseteq \mathbb{M}^{2}$ rational iff there exists $R \subseteq \Sigma^{*} \times \Sigma^{*}$ rational s.t. $\mathcal{R}=[R]:=\{([u],[v]) \mid(u, v) \in R\}$.
- here $R_{1}=\left\{\left(a^{m} b^{n}, c^{m} d^{n}\right) \mid m, n \geq 1\right\}$
$R_{2}=\left\{\left(d^{n} c^{m}, b^{n} a^{m}\right) \mid m, n \geq 1\right\}$
$\Longrightarrow \exists t, u, u^{\prime}, v^{\prime} \in \Sigma^{*}: t R_{1} u \sim u^{\prime} R_{2} v^{\prime}$ and $u \neq u^{\prime}$
$\Longrightarrow R_{1} \circ R_{2}=\emptyset, \mathcal{R}_{1} \circ \mathcal{R}_{2} \neq \emptyset$

Our salvation comes from ...

Our salvation comes from ...

Definition
$R \subseteq \Sigma^{*} \times \Sigma^{*}$ left-closed if $\sim \circ R \subseteq R \circ \sim$

Our salvation comes from ...

Definition
$R \subseteq \Sigma^{*} \times \Sigma^{*}$ left-closed if $\sim \circ R \subseteq R \circ \sim$, i.e.,

$$
\exists u^{\prime}: u \sim u^{\prime} R v^{\prime} \Longrightarrow \exists v: u R v \sim v^{\prime}
$$

Our salvation comes from ...

Definition
$R \subseteq \Sigma^{*} \times \Sigma^{*}$ left-closed if $\sim \circ R \subseteq R \circ \sim$, i.e.,

$$
\exists u^{\prime}: u \sim u^{\prime} R v^{\prime} \Longrightarrow \exists v: u R v \sim v^{\prime} .
$$

R is lc -rational if it is left-closed and rational.

Our salvation comes from ...

Definition

$R \subseteq \Sigma^{*} \times \Sigma^{*}$ left-closed if $\sim \circ R \subseteq R \circ \sim$, i.e.,

$$
\exists u^{\prime}: u \sim u^{\prime} R v^{\prime} \Longrightarrow \exists v: u R v \sim v^{\prime} .
$$

R is lc-rational if it is left-closed and rational.
$\mathcal{R} \subseteq \mathbb{M}^{2}$ Ic-rational if
there exists $R \subseteq \Sigma^{*} \times \Sigma^{*} \mathrm{lc}$-rational with $\mathcal{R}=[R]$.

Our salvation comes from ...

Definition

$R \subseteq \Sigma^{*} \times \Sigma^{*}$ left-closed if $\sim \circ R \subseteq R \circ \sim$, i.e.,

$$
\exists u^{\prime}: u \sim u^{\prime} R v^{\prime} \Longrightarrow \exists v: u R v \sim v^{\prime}
$$

R is Ic-rational if it is left-closed and rational.
$\mathcal{R} \subseteq \mathbb{M}^{2}$ Ic-rational if
there exists $R \subseteq \Sigma^{*} \times \Sigma^{*}$ Ic-rational with $\mathcal{R}=[R]$.
Since this definition "weg-definiert" problem from example:

Our salvation comes from ...

Definition

$R \subseteq \Sigma^{*} \times \Sigma^{*}$ left-closed if $\sim \circ R \subseteq R \circ \sim$, i.e.,

$$
\exists u^{\prime}: u \sim u^{\prime} R v^{\prime} \Longrightarrow \exists v: u R v \sim v^{\prime}
$$

R is Ic-rational if it is left-closed and rational.
$\mathcal{R} \subseteq \mathbb{M}^{2}$ Ic-rational if
there exists $R \subseteq \Sigma^{*} \times \Sigma^{*}$ Ic-rational with $\mathcal{R}=[R]$.
Since this definition circumvents problem from example:

Our salvation comes from ...

Definition

$R \subseteq \Sigma^{*} \times \Sigma^{*}$ left-closed if $\sim \circ R \subseteq R \circ \sim$, i.e.,

$$
\exists u^{\prime}: u \sim u^{\prime} R v^{\prime} \Longrightarrow \exists v: u R v \sim v^{\prime} .
$$

R is Ic-rational if it is left-closed and rational.
$\mathcal{R} \subseteq \mathbb{M}^{2}$ Ic-rational if
there exists $R \subseteq \Sigma^{*} \times \Sigma^{*}$ Ic-rational with $\mathcal{R}=[R]$.
Since this definition circumvents problem from example:
Theorem
Let $R_{1}, R_{2} \subseteq \Sigma^{*} \times \Sigma^{*}$ be rational.

Our salvation comes from ...

Definition

$R \subseteq \Sigma^{*} \times \Sigma^{*}$ left-closed if $\sim \circ R \subseteq R \circ \sim$, i.e.,

$$
\exists u^{\prime}: u \sim u^{\prime} R v^{\prime} \Longrightarrow \exists v: u R v \sim v^{\prime} .
$$

R is Ic-rational if it is left-closed and rational.
$\mathcal{R} \subseteq \mathbb{M}^{2}$ Ic-rational if
there exists $R \subseteq \Sigma^{*} \times \Sigma^{*}$ Ic-rational with $\mathcal{R}=[R]$.
Since this definition circumvents problem from example:
Theorem
Let $R_{1}, R_{2} \subseteq \Sigma^{*} \times \Sigma^{*}$ be rational.

- R_{2} left-closed $\Longrightarrow\left[R_{1} \circ R_{2}\right]=\left[R_{1}\right] \circ\left[R_{2}\right]$.

Our salvation comes from ...

Definition

$R \subseteq \Sigma^{*} \times \Sigma^{*}$ left-closed if $\sim \circ R \subseteq R \circ \sim$, i.e.,

$$
\exists u^{\prime}: u \sim u^{\prime} R v^{\prime} \Longrightarrow \exists v: u R v \sim v^{\prime} .
$$

R is Ic-rational if it is left-closed and rational.
$\mathcal{R} \subseteq \mathbb{M}^{2}$ Ic-rational if
there exists $R \subseteq \Sigma^{*} \times \Sigma^{*}$ Ic-rational with $\mathcal{R}=[R]$.
Since this definition circumvents problem from example:
Theorem
Let $R_{1}, R_{2} \subseteq \Sigma^{*} \times \Sigma^{*}$ be rational.

- R_{2} left-closed $\Longrightarrow\left[R_{1} \circ R_{2}\right]=\left[R_{1}\right] \circ\left[R_{2}\right]$.
- R_{1} and R_{2} left-closed $\Longrightarrow R_{1} \circ R_{2}$ left-closed.

Further properties

Let $\mathcal{K}, \mathcal{L} \subseteq \mathbb{M}$ non-empty, $\mathcal{R} \subseteq \mathbb{M} \times \mathbb{M}$.

1. $\mathcal{K} \times \mathcal{L}$ Ic-rational iff

- \mathcal{K} recognizable (i.e., $\left\{u \in \Sigma^{*} \mid[u] \in \mathcal{K}\right\}$ regular) and
- \mathcal{L} rational (i.e., there is $L \subseteq \Sigma^{*}$ regular with $\mathcal{L}=[L]$)

Further properties

Let $\mathcal{K}, \mathcal{L} \subseteq \mathbb{M}$ non-empty, $\mathcal{R} \subseteq \mathbb{M} \times \mathbb{M}$.

1. $\mathcal{K} \times \mathcal{L}$ Ic-rational iff

- \mathcal{K} recognizable (i.e., $\left\{u \in \Sigma^{*} \mid[u] \in \mathcal{K}\right\}$ regular) and
- \mathcal{L} rational (i.e., there is $L \subseteq \Sigma^{*}$ regular with $\left.\mathcal{L}=[L]\right)$

2.

$$
{ }^{\mathcal{R}} \mathcal{K} \times\{[\varepsilon]\}=\mathcal{R} \circ(\mathcal{K} \times\{[\varepsilon]\})
$$

Further properties

Let $\mathcal{K}, \mathcal{L} \subseteq \mathbb{M}$ non-empty, $\mathcal{R} \subseteq \mathbb{M} \times \mathbb{M}$.

1. $\mathcal{K} \times \mathcal{L}$ Ic-rational iff

- \mathcal{K} recognizable (i.e., $\left\{u \in \Sigma^{*} \mid[u] \in \mathcal{K}\right\}$ regular) and
- \mathcal{L} rational (i.e., there is $L \subseteq \Sigma^{*}$ regular with $\mathcal{L}=[L]$)

2. \mathcal{R} Ic-rational, \mathcal{K} recognizable

$$
\Longrightarrow{ }^{\mathcal{R}} \mathcal{K} \times\{[\varepsilon]\}=\mathcal{R} \circ(\mathcal{K} \times\{[\varepsilon]\}) \text { Ic-rational }
$$

Further properties

Let $\mathcal{K}, \mathcal{L} \subseteq \mathbb{M}$ non-empty, $\mathcal{R} \subseteq \mathbb{M} \times \mathbb{M}$.

1. $\mathcal{K} \times \mathcal{L}$ Ic-rational iff

- \mathcal{K} recognizable (i.e., $\left\{u \in \Sigma^{*} \mid[u] \in \mathcal{K}\right\}$ regular) and
- \mathcal{L} rational (i.e., there is $L \subseteq \Sigma^{*}$ regular with $\mathcal{L}=[L]$)

2. \mathcal{R} Ic-rational, \mathcal{K} recognizable
$\Longrightarrow{ }^{\mathcal{R}} \mathcal{K} \times\{[\varepsilon]\}=\mathcal{R} \circ(\mathcal{K} \times\{[\varepsilon]\})$ Ic-rational
$\Longrightarrow{ }^{\mathcal{R}} \mathcal{K}$ recognizable.

Further properties

Let $\mathcal{K}, \mathcal{L} \subseteq \mathbb{M}$ non-empty, $\mathcal{R} \subseteq \mathbb{M} \times \mathbb{M}$.

1. $\mathcal{K} \times \mathcal{L}$ Ic-rational iff

- \mathcal{K} recognizable (i.e., $\left\{u \in \Sigma^{*} \mid[u] \in \mathcal{K}\right\}$ regular) and
- \mathcal{L} rational (i.e., there is $L \subseteq \Sigma^{*}$ regular with $\mathcal{L}=[L]$)

2. \mathcal{R} Ic-rational, \mathcal{K} recognizable
$\Longrightarrow{ }^{\mathcal{R}} \mathcal{K} \times\{[\varepsilon]\}=\mathcal{R} \circ(\mathcal{K} \times\{[\varepsilon]\})$ Ic-rational
$\Longrightarrow{ }^{\mathcal{R}} \mathcal{K}$ recognizable.
3. \mathcal{L} rational, \mathcal{R} Ic-rational
$\left.\Longrightarrow\{[\varepsilon]\} \times \mathcal{L}^{\mathcal{R}}=(\{[\varepsilon]\} \times \mathcal{L}\}\right) \circ \mathcal{R}$ |c-rational
$\Longrightarrow \mathcal{L}^{\mathcal{R}}$ rational

Further properties

Let $\mathcal{K}, \mathcal{L} \subseteq \mathbb{M}$ non-empty, $\mathcal{R} \subseteq \mathbb{M} \times \mathbb{M}$.

1. $\mathcal{K} \times \mathcal{L}$ Ic-rational iff

- \mathcal{K} recognizable (i.e., $\left\{u \in \Sigma^{*} \mid[u] \in \mathcal{K}\right\}$ regular) and
- \mathcal{L} rational (i.e., there is $L \subseteq \Sigma^{*}$ regular with $\mathcal{L}=[L]$)

2. \mathcal{R} Ic-rational, \mathcal{K} recognizable
$\Longrightarrow{ }^{\mathcal{R}} \mathcal{K} \times\{[\varepsilon]\}=\mathcal{R} \circ(\mathcal{K} \times\{[\varepsilon]\})$ Ic-rational
$\Longrightarrow{ }^{\mathcal{R}} \mathcal{K}$ recognizable.
3. \mathcal{L} rational, \mathcal{R} Ic-rational
$\left.\Longrightarrow\{[\varepsilon]\} \times \mathcal{L}^{\mathcal{R}}=(\{[\varepsilon]\} \times \mathcal{L}\}\right) \circ \mathcal{R}$ Ic-rational
$\Longrightarrow \mathcal{L}^{\mathcal{R}}$ rational
4. $\mathcal{K} \times \mathcal{L}, \mathcal{R}$ Ic-rational $\Longrightarrow(\mathcal{K} \times \mathcal{L}) \cdot \mathcal{R}$ Ic-rational

An application

An application

Theorem
Let \mathcal{P} be a cPDS (i.e. PDS with trace pushdown s.t. ...) and p, q states of \mathcal{P}.

An application

Theorem
Let \mathcal{P} be a cPDS (i.e. PDS with trace pushdown s.t. ...) and p, q states of \mathcal{P}.
The reachability relation $\mathcal{R}=\left\{([u],[v]) \mid(p,[u]) \vdash^{*}(q,[v])\right\}$ is Ic-rational.

An application

Theorem
Let \mathcal{P} be a cPDS (i.e. PDS with trace pushdown s.t. ...) and p, q states of \mathcal{P}.
The reachability relation $\mathcal{R}=\left\{([u],[v]) \mid(p,[u]) \vdash^{*}(q,[v])\right\}$ is Ic-rational.

Corollary (cf. Köcher \& Kuske FCT'23)

- forwards reachability preserves rationality: p, q states of $\mathcal{P}, \mathcal{L} \subseteq \mathbb{M}$ rational

$$
\Longrightarrow\left\{[v] \in \mathbb{M} \mid \exists[u] \in \mathcal{L}:(p,[u]) \vdash^{*}(q,[v])\right\}=\mathcal{L}^{\mathcal{R}}
$$

An application

Theorem
Let \mathcal{P} be a cPDS (i.e. PDS with trace pushdown s.t. ...) and p, q states of \mathcal{P}.
The reachability relation $\mathcal{R}=\left\{([u],[v]) \mid(p,[u]) \vdash^{*}(q,[v])\right\}$ is Ic-rational.

Corollary (cf. Köcher \& Kuske FCT'23)

- forwards reachability preserves rationality: p, q states of $\mathcal{P}, \mathcal{L} \subseteq \mathbb{M}$ rational

$$
\Longrightarrow\left\{[v] \in \mathbb{M} \mid \exists[u] \in \mathcal{L}:(p,[u]) \vdash^{*}(q,[v])\right\}=\mathcal{L}^{\mathcal{R}} \text { rational }
$$

An application

Theorem

Let \mathcal{P} be a cPDS (i.e. PDS with trace pushdown s.t. ...) and p, q states of \mathcal{P}.
The reachability relation $\mathcal{R}=\left\{([u],[v]) \mid(p,[u]) \vdash^{*}(q,[v])\right\}$ is Ic-rational.

Corollary (cf. Köcher \& Kuske FCT'23)

- forwards reachability preserves rationality: p, q states of $\mathcal{P}, \mathcal{L} \subseteq \mathbb{M}$ rational

$$
\Longrightarrow\left\{[v] \in \mathbb{M} \mid \exists[u] \in \mathcal{L}:(p,[u]) \vdash^{*}(q,[v])\right\}=\mathcal{L}^{\mathcal{R}} \text { rational }
$$

- backwards reachability preserves recognizability:
p, q states of $\mathcal{P}, \mathcal{K} \subseteq \mathbb{M}$ recognizable

$$
\Longrightarrow\left\{[u] \in \mathbb{M} \mid \exists[v] \in \mathcal{K}:(p,[u]) \vdash^{*}(q,[v])\right\}={ }^{\mathcal{R}} \mathcal{K} \text { rec. }
$$

