Rational trace relations¹

Dietrich Kuske

Technische Universität Ilmenau

¹Submitted to FSTTCS 2023

A class of rational trace relations closed under ${\rm composition}^1$

Dietrich Kuske

Technische Universität Ilmenau

¹Accepted at FSTTCS 2023

 $L \subseteq \Gamma^*$ rational iff constructible from finite languages by union \cup , concatenation \cdot , and iteration *.

 $L \subseteq \Gamma^*$ rational iff constructible from finite languages by union \cup , concatenation \cdot , and iteration *.

very much loved concept

 $L \subseteq \Gamma^*$ rational iff constructible from finite languages by union \cup , concatenation \cdot , and iteration *.

very much loved concept

 alternative characterisations: combinatorial logical algebraic

• • •

 $L \subseteq \Gamma^*$ rational iff constructible from finite languages by union \cup , concatenation \cdot , and iteration *.

very much loved concept

 alternative characterisations: combinatorial logical algebraic

• • •

2. "everything" is decidable: emptiness, inclusion, ...

 $L \subseteq \Gamma^*$ rational iff constructible from finite languages by union \cup , concatenation \cdot , and iteration *.

very much loved concept

- alternative characterisations: combinatorial logical algebraic
 - • •
- 2. "everything" is decidable: emptiness, inclusion, ...

3. closure properties: complementation intersection (inverse) homomorphisms rational transductions

. . .

 $L \subseteq \Gamma^*$ rational iff constructible from finite languages by union \cup , concatenation \cdot , and iteration *.

very much loved concept

- 1. alternative characterisations: combinatorial logical algebraic
 - • •
- 2. "everything" is decidable: emptiness, inclusion, ...

- 3. closure properties: complementation intersection (inverse) homomorphisms rational transductions
- 4. applications: parsing model checking

• • •

 $L \subseteq \Gamma^*$ rational iff constructible from finite languages by union \cup , concatenation \cdot , and iteration *.

very much loved concept

- 1. alternative characterisations: combinatorial logical algebraic
- 2. "everything" is decidable: emptiness, inclusion, ...

- closure properties: complementation intersection (inverse) homomorphisms rational transductions
- 4. *applications:* parsing model checking

. . .

last, but not least: training ground for future computer scientists

 $L \subseteq \Gamma^*$ rational iff constructible from finite languages by union \cup , concatenation \cdot , and iteration *.

very much loved concept

- 1. alternative characterisations: combinatorial logical algebraic
- 2. "everything" is decidable: emptiness, inclusion, ...

- closure properties: complementation intersection (inverse) homomorphisms rational transductions
- 4. *applications:* parsing model checking

. . .

last, but not least: *training ground* for future computer scientists (well: theoreticians)

 $R \subseteq \Gamma^* \times \Gamma^*$ rational iff constructible from finite relations by union \cup , concatenation \cdot , and iteration *.

 $R \subseteq \Gamma^* \times \Gamma^*$ rational iff constructible from finite relations by union \cup , concatenation \cdot , and iteration *.

much loved concept:

 $R \subseteq \Gamma^* \times \Gamma^*$ rational iff constructible from finite relations by union \cup , concatenation \cdot , and iteration *.

much loved concept:

1. alternative characterisations:

2-tape automata, homomorphic image of regular language ("Nivat's theorem")

 $R \subseteq \Gamma^* \times \Gamma^*$ rational iff constructible from finite relations by union \cup , concatenation \cdot , and iteration *.

much loved concept:

1. alternative characterisations:

2-tape automata, homomorphic image of regular language ("Nivat's theorem")

2. closure properties 1:

(inverse) homomorphisms, composition \circ , inverse R^{-1} , ...

 $R \subseteq \Gamma^* \times \Gamma^*$ rational iff constructible from finite relations by union \cup , concatenation \cdot , and iteration *.

much loved concept:

1. alternative characterisations:

2-tape automata, homomorphic image of regular language ("Nivat's theorem")

- closure properties 1:
 (inverse) homomorphisms, composition ∘, inverse R⁻¹, ...
- 3. closure properties 2:

L regular $\Rightarrow L^R = \{v \mid \exists u \in L: (u, v) \in R\}$ and ${}^RL = \{u \mid \exists v \in L: (u, v) \in R\}$ regular (similarly for many other language classes)

 $R \subseteq \Gamma^* \times \Gamma^*$ rational iff constructible from finite relations by union \cup , concatenation \cdot , and iteration *.

much loved concept:

4. closure properties 2: $L \text{ regular} \Rightarrow \frac{L^R}{R} = \{v \mid \exists u \in L : (u, v) \in R\} \text{ and}$ $R = \{u \mid \exists v \in L : (u, v) \in R\} \text{ regular}$

 $R \subseteq \Gamma^* \times \Gamma^*$ rational iff constructible from finite relations by union \cup , concatenation \cdot , and iteration *.

much loved concept:

- 4. closure properties 2: $L \text{ regular} \Rightarrow \frac{L^R}{R} = \{v \mid \exists u \in L : (u, v) \in R\} \text{ and}$ $R = \{u \mid \exists v \in L : (u, v) \in R\} \text{ regular}$
- 5. applications:

automatic structures, infinite state model checking

 $R \subseteq \Gamma^* \times \Gamma^*$ rational iff constructible from finite relations by union \cup , concatenation \cdot , and iteration *.

much loved concept:

- 4. closure properties 2: $L \text{ regular} \Rightarrow \frac{L^R}{R} = \{v \mid \exists u \in L : (u, v) \in R\} \text{ and}$ $R = \{u \mid \exists v \in L : (u, v) \in R\} \text{ regular}$
- 5. applications:

automatic structures, infinite state model checking

in particular: P PDS (=PDA over $\Sigma = \{a\}$)

 $R \subseteq \Gamma^* \times \Gamma^*$ rational iff constructible from finite relations by union \cup , concatenation \cdot , and iteration *.

much loved concept:

- 4. closure properties 2: $L \text{ regular} \Rightarrow \frac{L^R}{R} = \{v \mid \exists u \in L : (u, v) \in R\} \text{ and}$ $R = \{u \mid \exists v \in L : (u, v) \in R\} \text{ regular}$
- 5. applications:

automatic structures, infinite state model checking

in particular: $P \text{ PDS} (= \text{PDA over } \Sigma = \{a\})$ $\implies R := \{(u, v) \mid (\iota, u) \vdash^* (f, v)\} \text{ rational (Caucal '92)}$

 $R \subseteq \Gamma^* \times \Gamma^*$ rational iff constructible from finite relations by union \cup , concatenation \cdot , and iteration *.

much loved concept:

- 4. closure properties 2: $L \text{ regular} \Rightarrow \frac{L^R}{R} = \{v \mid \exists u \in L : (u, v) \in R\} \text{ and}$ $R = \{u \mid \exists v \in L : (u, v) \in R\} \text{ regular}$
- 5. applications:

automatic structures, infinite state model checking

in particular: $P \text{ PDS} (=\text{PDA over } \Sigma = \{a\})$ $\implies R := \{(u, v) \mid (\iota, u) \vdash^* (f, v)\} \text{ rational (Caucal '92)}$ $\implies L^R \text{ and } {}^R L \text{ regular}$

 $R \subseteq \Gamma^* \times \Gamma^*$ rational iff constructible from finite relations by union \cup , concatenation \cdot , and iteration *.

much loved concept:

- 4. closure properties 2: $L \text{ regular} \Rightarrow L^R = \{v \mid \exists u \in L : (u, v) \in R\} \text{ and}$ $R = \{u \mid \exists v \in L : (u, v) \in R\} \text{ regular}$
- 5. applications:

automatic structures, infinite state model checking

in particular: $P \text{ PDS} (=\text{PDA over } \Sigma = \{a\})$ $\implies R := \{(u, v) \mid (\iota, u) \vdash^* (f, v)\} \text{ rational (Caucal '92)}$ $\implies L^R \text{ and } {}^R L \text{ regular}$

i.e., forwards and backwards reachability preserve regularity

 $R \subseteq \Gamma^* \times \Gamma^*$ rational iff constructible from finite relations by union \cup , concatenation \cdot , and iteration *.

much loved concept:

4. closure properties 2:

$$L \text{ regular} \Rightarrow \frac{L^R}{R} = \{v \mid \exists u \in L : (u, v) \in R\} \text{ and}$$

 $R = \{u \mid \exists v \in L : (u, v) \in R\} \text{ regular}$

5. applications:

automatic structures, infinite state model checking

in particular: $P \text{ PDS} (=\text{PDA over } \Sigma = \{a\})$ $\implies R := \{(u, v) \mid (\iota, u) \vdash^* (f, v)\}$ rational (Caucal '92) $\implies L^R$ and RL regular

i.e., forwards and backwards reachability preserve regularity \implies reachability of regular sets of configurations decidable

replace free monoid Γ^* by trace monoid $\mathbb M.$

replace free monoid Γ^* by trace monoid $\mathbb M.$

Definition

• independence alphabet: (Γ, I) with $I \subseteq \Gamma^*$ symmetric

replace free monoid Γ^* by trace monoid \mathbb{M} .

Definition

- independence alphabet: (Γ, I) with $I \subseteq \Gamma^*$ symmetric
- ~: least congruence on Γ^* with $ab \sim ba$ for all $(a, b) \in I$

replace free monoid Γ^* by trace monoid \mathbb{M} .

Definition

- independence alphabet: (Γ, I) with $I \subseteq \Gamma^*$ symmetric
- ~: least congruence on Γ* with ab ~ ba for all (a, b) ∈ I
 i.e. u ~ v iff u can be re-arranged into v by transposing neighboring independent letters

replace free monoid Γ^* by trace monoid \mathbb{M} .

Definition

- independence alphabet: (Γ, I) with $I \subseteq \Gamma^*$ symmetric
- ~: least congruence on Γ* with ab ~ ba for all (a, b) ∈ I
 i.e. u ~ v iff u can be re-arranged into v by transposing neighboring independent letters
 e.g. (with (a, b) ∈ I and (a, c) ∉ I):
 aabcba ~ abacab ~ baacab ∻ baaacb

replace free monoid Γ^* by trace monoid \mathbb{M} .

Definition

- independence alphabet: (Γ, I) with $I \subseteq \Gamma^*$ symmetric
- ~: least congruence on Γ* with ab ~ ba for all (a, b) ∈ I
 i.e. u ~ v iff u can be re-arranged into v by transposing neighboring independent letters
 e.g. (with (a, b) ∈ I and (a, c) ∉ I):

aabcba \sim abacab \sim baacab eq baaacb

• trace monoid $\mathbb{M} = \Gamma^* / \sim$:

elements are equivalence classes [u] of words u

replace free monoid Γ^* by trace monoid \mathbb{M} .

Definition

- independence alphabet: (Γ, I) with $I \subseteq \Gamma^*$ symmetric
- ~: least congruence on Γ* with ab ~ ba for all (a, b) ∈ I
 i.e. u ~ v iff u can be re-arranged into v by transposing neighboring independent letters
 - e.g. (with $(a, b) \in I$ and $(a, c) \notin I$): aabcba ~ abacab ~ baacab \checkmark baaacb
- trace monoid $\mathbb{M} = \Gamma^* / \sim$:

elements are equivalence classes [u] of words u concatenation: $[u] \cdot [v] := [uv]$

replace free monoid Γ^* by trace monoid \mathbb{M} .

Definition

- independence alphabet: (Γ, I) with $I \subseteq \Gamma^*$ symmetric
- ~: least congruence on Γ* with ab ~ ba for all (a, b) ∈ I
 i.e. u ~ v iff u can be re-arranged into v by transposing neighboring independent letters
 - e.g. (with $(a, b) \in I$ and $(a, c) \notin I$): aabcba ~ abacab ~ baacab \checkmark baaacb
- trace monoid $\mathbb{M} = \Gamma^* / \sim$:

elements are equivalence classes [u] of words u concatenation: $[u] \cdot [v] := [uv]$ neutral element: $[u] \cdot [\varepsilon] = [\varepsilon] \cdot [u] = [u]$

replace free monoid Γ^* by trace monoid \mathbb{M} .

Definition

- independence alphabet: (Γ, I) with $I \subseteq \Gamma^*$ symmetric
- ~: least congruence on Γ* with ab ~ ba for all (a, b) ∈ I
 i.e. u ~ v iff u can be re-arranged into v by transposing neighboring independent letters
 - e.g. (with $(a, b) \in I$ and $(a, c) \notin I$): aabcba ~ abacab ~ baacab \checkmark baaacb
- trace monoid $\mathbb{M} = \Gamma^* / \sim$:

elements are equivalence classes [u] of words u concatenation: $[u] \cdot [v] := [uv]$ neutral element: $[u] \cdot [\varepsilon] = [\varepsilon] \cdot [u] = [u]$

R ⊆ M × M rational iff constructible from finite relations by union ∪, concatenation ⋅, and iteration *.

Today's question

Definition

 $\mathcal{R} \subseteq \mathbb{M} \times \mathbb{M}$ rational iff constructible from finite relations by union

 $\cup,$ concatenation $\cdot,$ and iteration $^{\ast}.$

Today's question

Definition

 $\mathcal{R} \subseteq \mathbb{M} \times \mathbb{M}$ rational iff constructible from finite relations by union \cup , concatenation \cdot , and iteration *.

General question

Which of the properties of rational word relations survive this abstraction?

Definition

 $\mathcal{R} \subseteq \mathbb{M} \times \mathbb{M}$ rational iff constructible from finite relations by union \cup , concatenation \cdot , and iteration *.

General question

Which of the properties of rational word relations survive this abstraction?

Example

$$\mathcal{R}_1 = \{([a], [c])\}^+ \cdot \{([b], [d])\}^+ = \{([a^m b^n], [c^m d^n]) \mid m, n \ge 1\}$$

Definition

 $\mathcal{R} \subseteq \mathbb{M} \times \mathbb{M}$ rational iff constructible from finite relations by union \cup , concatenation \cdot , and iteration *.

General question

Which of the properties of rational word relations survive this abstraction?

Example

$$\begin{aligned} \mathcal{R}_1 &= \left\{ ([a], [c]) \right\}^+ \cdot \left\{ ([b], [d]) \right\}^+ = \left\{ ([a^m b^n], [c^m d^n]) \mid m, n \ge 1 \\ \mathcal{R}_2 &= \left\{ ([d^n c^m], [b^n a^m]) \mid m, n \ge 1 \right\} \end{aligned}$$

Definition

 $\mathcal{R} \subseteq \mathbb{M} \times \mathbb{M}$ rational iff constructible from finite relations by union \cup , concatenation \cdot , and iteration *.

General question

Which of the properties of rational word relations survive this abstraction?

Example

$$\begin{aligned} \mathcal{R}_1 &= \left\{ ([a], [c]) \right\}^+ \cdot \left\{ ([b], [d]) \right\}^+ &= \left\{ ([a^m b^n], [c^m d^n]) \mid m, n \ge 1 \right\} \\ \mathcal{R}_2 &= \left\{ ([d^n c^m], [b^n a^m]) \mid m, n \ge 1 \right\} \\ &= \left\{ ([c^m d^n], [b^n a^m]) \mid m, n \ge 1 \right\} \end{aligned}$$

Definition

 $\mathcal{R} \subseteq \mathbb{M} \times \mathbb{M}$ rational iff constructible from finite relations by union \cup , concatenation \cdot , and iteration *.

General question

Which of the properties of rational word relations survive this abstraction?

Example

$$\begin{aligned} \mathcal{R}_1 &= \left\{ ([a], [c]) \right\}^+ \cdot \left\{ ([b], [d]) \right\}^+ &= \left\{ ([a^m b^n], [c^m d^n]) \mid m, n \ge 1 \right\} \\ \mathcal{R}_2 &= \left\{ ([d^n c^m], [b^n a^m]) \mid m, n \ge 1 \right\} \\ &= \left\{ ([c^m d^n], [b^n a^m]) \mid m, n \ge 1 \right\} \\ \mathcal{R}_1 \circ \mathcal{R}_2 &= \left\{ ([a^m b^n], [b^n a^m]) \mid m, n \ge 1 \right\} \end{aligned}$$

Definition

 $\mathcal{R} \subseteq \mathbb{M} \times \mathbb{M}$ rational iff constructible from finite relations by union \cup , concatenation \cdot , and iteration *.

General question

Which of the properties of rational word relations survive this abstraction?

Example

1

$$\begin{aligned} \mathcal{R}_{1} &= \left\{ ([a], [c]) \right\}^{+} \cdot \left\{ ([b], [d]) \right\}^{+} = \left\{ ([a^{m}b^{n}], [c^{m}d^{n}]) \mid m, n \geq 1 \right\} \\ \mathcal{R}_{2} &= \left\{ ([d^{n}c^{m}], [b^{n}a^{m}]) \mid m, n \geq 1 \right\} \\ &= \left\{ ([c^{m}d^{n}], [b^{n}a^{m}]) \mid m, n \geq 1 \right\} \\ \mathcal{R}_{1} \circ \mathcal{R}_{2} &= \left\{ ([a^{m}b^{n}], [b^{n}a^{m}]) \mid m, n \geq 1 \right\} \text{ not rational } \textcircled{O} \end{aligned}$$

$$\begin{array}{rcl} \mathcal{R}_1 &=& \left\{ ([a^m b^n], [c^m d^n]) \mid m, n \geq 1 \right\} \\ \mathcal{R}_2 &=& \left\{ ([d^n c^m], [b^n a^m]) \mid m, n \geq 1 \right\} \\ \mathcal{R}_1 \circ \mathcal{R}_2 &\neq & \emptyset \text{ not rational} \end{array}$$

$$\begin{array}{rcl} \mathcal{R}_1 &=& \left\{ \left([a^m b^n], [c^m d^n] \right) \mid m, n \geq 1 \right\} \\ \mathcal{R}_2 &=& \left\{ \left([d^n c^m], [b^n a^m] \right) \mid m, n \geq 1 \right\} \\ \mathcal{R}_1 \circ \mathcal{R}_2 &\neq & \emptyset \text{ not rational} \end{array}$$

$$\begin{aligned} \mathcal{R}_1 &= \left\{ \left([a^m b^n], [c^m d^n] \right) \mid m, n \geq 1 \right\} \\ \mathcal{R}_2 &= \left\{ \left([d^n c^m], [b^n a^m] \right) \mid m, n \geq 1 \right\} \\ \mathcal{R}_1 \circ \mathcal{R}_2 &\neq \emptyset \text{ not rational} \end{aligned}$$

• here
$$R_1 = \{(a^m b^n, c^m d^n) \mid m, n \ge 1\}$$

 $R_2 = \{(d^n c^m, b^n a^m) \mid m, n \ge 1\}$

$$\begin{array}{rcl} \mathcal{R}_1 &=& \left\{ \left([a^m b^n], [c^m d^n] \right) \mid m, n \geq 1 \right\} \\ \mathcal{R}_2 &=& \left\{ \left([d^n c^m], [b^n a^m] \right) \mid m, n \geq 1 \right\} \\ \mathcal{R}_1 \circ \mathcal{R}_2 &\neq & \emptyset \text{ not rational} \end{array}$$

• here
$$R_1 = \{(a^m b^n, c^m d^n) \mid m, n \ge 1\}$$

 $R_2 = \{(d^n c^m, b^n a^m) \mid m, n \ge 1\}$
 $\Longrightarrow \exists t, u, u', v' \in \Sigma^* : t R_1 u \sim u' R_2 v' \text{ and } u \neq u'$

$$\begin{array}{lll} \mathcal{R}_1 &=& \left\{ ([a^m b^n], [c^m d^n]) \mid m, n \geq 1 \right\} \\ \mathcal{R}_2 &=& \left\{ ([d^n c^m], [b^n a^m]) \mid m, n \geq 1 \right\} \\ \mathcal{R}_1 \circ \mathcal{R}_2 &\neq & \emptyset \text{ not rational} \end{array}$$

• here
$$R_1 = \{(a^m b^n, c^m d^n) \mid m, n \ge 1\}$$

 $R_2 = \{(d^n c^m, b^n a^m) \mid m, n \ge 1\}$
 $\Longrightarrow \exists t, u, u', v' \in \Sigma^* : t R_1 u \sim u' R_2 v' \text{ and } u \neq u'$
 $\Longrightarrow R_1 \circ R_2 = \emptyset, \ \mathcal{R}_1 \circ \mathcal{R}_2 \neq \emptyset$

 $\begin{array}{l} \text{Definition} \\ R \subseteq \Sigma^* \times \Sigma^* \text{ left-closed } \text{if } \sim \circ R \subseteq R \circ \sim \end{array}$

Definition $R \subseteq \Sigma^* \times \Sigma^*$ left-closed if $\sim \circ R \subseteq R \circ \sim$, i.e.,

$$\exists u': u \sim u' \ R \ v' \implies \exists v: u \ R \ v \sim v'.$$

Definition $R \subseteq \Sigma^* \times \Sigma^*$ left-closed if $\sim \circ R \subseteq R \circ \sim$, i.e., $\exists u' : u \sim u' R v' \implies \exists v : u R v \sim v'.$

R is lc-rational if it is left-closed and rational.

 $\begin{array}{l} \text{Definition} \\ R \subseteq \Sigma^* \times \Sigma^* \text{ left-closed if } \sim \circ R \subseteq R \circ \sim, \text{ i.e.,} \\ \\ \exists u' \colon u \sim u' \; R \; v' \implies \exists v \colon u \; R \; v \sim v' \; . \end{array}$ $\begin{array}{l} R \text{ is lc-rational if it is left-closed and rational.} \\ \mathcal{R} \subseteq \mathbb{M}^2 \; \text{lc-rational if} \\ \\ \text{ there exists } R \subseteq \Sigma^* \times \Sigma^* \; \text{lc-rational with } \mathcal{R} = [R]. \end{array}$

 $\begin{array}{l} \text{Definition} \\ R \subseteq \Sigma^* \times \Sigma^* \text{ left-closed if } \sim \circ R \subseteq R \circ \sim, \text{ i.e.,} \\ \exists u' \colon u \sim u' \; R \; v' \implies \exists v \colon u \; R \; v \sim v' \; . \\ R \; \text{is lc-rational if it is left-closed and rational.} \\ \mathcal{R} \subseteq \mathbb{M}^2 \; \text{lc-rational if} \\ \; \text{there exists } R \subseteq \Sigma^* \times \Sigma^* \; \text{lc-rational with } \mathcal{R} = [R]. \\ \text{Since this definition circumvents problem from example:} \end{array}$

 $\begin{array}{l} \mbox{Definition} \\ R \subseteq \Sigma^* \times \Sigma^* \mbox{ left-closed if } \sim \circ R \subseteq R \circ \sim, \mbox{ i.e.,} \\ \\ \exists u' \colon u \sim u' \ R \ v' \implies \exists v \colon u \ R \ v \sim v' \ . \\ \end{array} \\ R \ \mbox{is lc-rational if it is left-closed and rational.} \\ \mathcal{R} \subseteq \mathbb{M}^2 \ \mbox{lc-rational if} \\ \\ \mbox{ there exists } R \subseteq \Sigma^* \times \Sigma^* \ \mbox{lc-rational with } \mathcal{R} = [R]. \\ \mbox{Since this definition circumvents problem from example:} \end{array}$

Theorem Let $R_1, R_2 \subseteq \Sigma^* \times \Sigma^*$ be rational.

Definition $R \subseteq \Sigma^* \times \Sigma^*$ left-closed if $\sim \circ R \subseteq R \circ \sim$, i.e., $\exists u' : u \sim u' R v' \implies \exists v : u R v \sim v'.$ R is lc-rational if it is left-closed and rational.

R is lc-rational if it is left-closed and rational. $\mathcal{R} \subseteq \mathbb{M}^2$ lc-rational if there exists $R \subseteq \Sigma^* \times \Sigma^*$ lc-rational with $\mathcal{R} = [R]$. Since this definition circumvents problem from example:

Theorem

Let $R_1, R_2 \subseteq \Sigma^* \times \Sigma^*$ be rational.

• R_2 left-closed $\Longrightarrow [R_1 \circ R_2] = [R_1] \circ [R_2].$

Definition $R \subseteq \Sigma^* \times \Sigma^*$ left-closed if $\sim \circ R \subseteq R \circ \sim$, i.e.,

$$\exists u': u \sim u' \ R \ v' \implies \exists v: u \ R \ v \sim v'.$$

R is lc-rational if it is left-closed and rational. $\mathcal{R} \subseteq \mathbb{M}^2$ lc-rational if there exists $R \subseteq \Sigma^* \times \Sigma^*$ lc-rational with $\mathcal{R} = [R]$. Since this definition circumvents problem from example:

Theorem

Let $R_1, R_2 \subseteq \Sigma^* \times \Sigma^*$ be rational.

- R_2 left-closed $\Longrightarrow [R_1 \circ R_2] = [R_1] \circ [R_2].$
- R_1 and R_2 left-closed $\implies R_1 \circ R_2$ left-closed.

- 1. $\mathcal{K} \times \mathcal{L}$ lc-rational iff
 - \mathcal{K} recognizable (i.e., $\{u \in \Sigma^* \mid [u] \in \mathcal{K}\}$ regular) and
 - \mathcal{L} rational (i.e., there is $L \subseteq \Sigma^*$ regular with $\mathcal{L} = [L]$)

Let $\mathcal{K}, \mathcal{L} \subseteq \mathbb{M}$ non-empty, $\mathcal{R} \subseteq \mathbb{M} \times \mathbb{M}$.

- 1. $\mathcal{K} \times \mathcal{L}$ lc-rational iff
 - \mathcal{K} recognizable (i.e., $\{u \in \Sigma^* \mid [u] \in \mathcal{K}\}$ regular) and
 - \mathcal{L} rational (i.e., there is $L \subseteq \Sigma^*$ regular with $\mathcal{L} = [L]$)

2.

$${}^{\mathcal{R}}\mathcal{K} \times \{[\varepsilon]\} = \mathcal{R} \circ \left(\mathcal{K} \times \{[\varepsilon]\}\right)$$

- 1. $\mathcal{K} \times \mathcal{L}$ lc-rational iff
 - \mathcal{K} recognizable (i.e., $\{u \in \Sigma^* \mid [u] \in \mathcal{K}\}$ regular) and
 - \mathcal{L} rational (i.e., there is $L \subseteq \Sigma^*$ regular with $\mathcal{L} = [L]$)
- 2. \mathcal{R} lc-rational, \mathcal{K} recognizable $\implies {}^{\mathcal{R}}\mathcal{K} \times \{[\varepsilon]\} = \mathcal{R} \circ (\mathcal{K} \times \{[\varepsilon]\})$ lc-rational

- 1. $\mathcal{K} \times \mathcal{L}$ lc-rational iff
 - \mathcal{K} recognizable (i.e., $\{u \in \Sigma^* \mid [u] \in \mathcal{K}\}$ regular) and
 - \mathcal{L} rational (i.e., there is $L \subseteq \Sigma^*$ regular with $\mathcal{L} = [L]$)
- 2. \mathcal{R} lc-rational, \mathcal{K} recognizable $\implies {}^{\mathcal{R}}\mathcal{K} \times \{[\varepsilon]\} = \mathcal{R} \circ (\mathcal{K} \times \{[\varepsilon]\})$ lc-rational $\implies {}^{\mathcal{R}}\mathcal{K}$ recognizable.

- 1. $\mathcal{K} \times \mathcal{L}$ lc-rational iff
 - \mathcal{K} recognizable (i.e., $\{u \in \Sigma^* \mid [u] \in \mathcal{K}\}$ regular) and
 - \mathcal{L} rational (i.e., there is $L \subseteq \Sigma^*$ regular with $\mathcal{L} = [L]$)
- 2. \mathcal{R} lc-rational, \mathcal{K} recognizable $\implies {}^{\mathcal{R}}\mathcal{K} \times \{[\varepsilon]\} = \mathcal{R} \circ (\mathcal{K} \times \{[\varepsilon]\})$ lc-rational $\implies {}^{\mathcal{R}}\mathcal{K}$ recognizable.
- 3. \mathcal{L} rational, \mathcal{R} lc-rational

$$\implies \{[\varepsilon]\} \times \mathcal{L}^{\mathcal{R}} = (\{[\varepsilon]\} \times \mathcal{L}\}) \circ \mathcal{R} \text{ lc-rational}$$
$$\implies \mathcal{L}^{\mathcal{R}} \text{ rational}$$

- 1. $\mathcal{K} \times \mathcal{L}$ lc-rational iff
 - \mathcal{K} recognizable (i.e., $\{u \in \Sigma^* \mid [u] \in \mathcal{K}\}$ regular) and
 - \mathcal{L} rational (i.e., there is $L \subseteq \Sigma^*$ regular with $\mathcal{L} = [L]$)
- 2. \mathcal{R} lc-rational, \mathcal{K} recognizable $\implies {}^{\mathcal{R}}\mathcal{K} \times \{[\varepsilon]\} = \mathcal{R} \circ (\mathcal{K} \times \{[\varepsilon]\})$ lc-rational $\implies {}^{\mathcal{R}}\mathcal{K}$ recognizable.
- 3. \mathcal{L} rational, \mathcal{R} lc-rational $\implies \{[\varepsilon]\} \times \mathcal{L}^{\mathcal{R}} = (\{[\varepsilon]\} \times \mathcal{L}\}) \circ \mathcal{R}$ lc-rational $\implies \mathcal{L}^{\mathcal{R}}$ rational
- 4. $\mathcal{K} \times \mathcal{L}$, \mathcal{R} lc-rational $\Longrightarrow (\mathcal{K} \times \mathcal{L}) \cdot \mathcal{R}$ lc-rational

Theorem

Let \mathcal{P} be a cPDS (i.e. PDS with trace pushdown s.t. ...) and p, q states of \mathcal{P} .

Theorem

Let \mathcal{P} be a cPDS (i.e. PDS with trace pushdown s.t. ...) and p, q states of \mathcal{P} .

The reachability relation $\mathcal{R} = \{([u], [v]) \mid (p, [u]) \vdash^* (q, [v])\}$ is lc-rational.

Theorem

Let \mathcal{P} be a cPDS (i.e. PDS with trace pushdown s.t. ...) and p, q states of \mathcal{P} .

The reachability relation $\mathcal{R} = \{([u], [v]) \mid (p, [u]) \vdash^* (q, [v])\}$ is lc-rational.

Corollary (cf. Köcher & Kuske FCT'23)

• forwards reachability preserves rationality: p, q states of $\mathcal{P}, \mathcal{L} \subseteq \mathbb{M}$ rational $\Longrightarrow \{[v] \in \mathbb{M} \mid \exists [u] \in \mathcal{L} \colon (p, [u]) \vdash^* (q, [v])\} = \mathcal{L}^{\mathcal{R}}$

Theorem

Let \mathcal{P} be a cPDS (i.e. PDS with trace pushdown s.t. ...) and p, q states of \mathcal{P} .

The reachability relation $\mathcal{R} = \{([u], [v]) \mid (p, [u]) \vdash^* (q, [v])\}$ is lc-rational.

Corollary (cf. Köcher & Kuske FCT'23)

• forwards reachability preserves rationality: p, q states of $\mathcal{P}, \mathcal{L} \subseteq \mathbb{M}$ rational $\Longrightarrow \{[v] \in \mathbb{M} \mid \exists [u] \in \mathcal{L} \colon (p, [u]) \vdash^* (q, [v])\} = \mathcal{L}^{\mathcal{R}}$ rational

Theorem

Let \mathcal{P} be a cPDS (i.e. PDS with trace pushdown s.t. ...) and p, q states of \mathcal{P} .

The reachability relation $\mathcal{R} = \{([u], [v]) \mid (p, [u]) \vdash^* (q, [v])\}$ is lc-rational.

Corollary (cf. Köcher & Kuske FCT'23)

forwards reachability preserves rationality:
p, q states of P, L ⊆ M rational
⇒ {[v] ∈ M | ∃[u] ∈ L: (p, [u]) ⊢* (q, [v])} = L^R rational
backwards reachability preserves recognizability:
p, q states of P, K ⊆ M recognizable
⇒ {[u] ∈ M | ∃[v] ∈ K: (p, [u]) ⊢* (q, [v])} = ^RK rec.