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Very classical setting: rational languages

L ⊆ Γ∗ rational iff constructible from finite languages by union ∪,
concatenation ·, and iteration ∗.

very much loved concept

1. alternative characterisations:
combinatorial
logical
algebraic
· · ·

2. “everything” is decidable:
emptiness, inclusion, ...

3. closure properties:
complementation
intersection
(inverse) homomorphisms
rational transductions
· · ·

4. applications:
parsing
model checking
· · ·

last, but not least: training ground for future computer scientists
(well: theoreticians)
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Classical setting: rational relations
(=̂ rational transductions)

R ⊆ Γ∗ × Γ∗ rational iff constructible from finite relations by
union ∪, concatenation ·, and iteration ∗.

much loved concept:
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much loved concept:

1. alternative characterisations:
2-tape automata, homomorphic image of regular language
(“Nivat’s theorem”)

2. closure properties 1:
(inverse) homomorphisms, composition ◦, inverse R−1, . . .

3. closure properties 2:
L regular ⇒ LR = {v | ∃u ∈ L : (u, v) ∈ R} and

RL = {u | ∃v ∈ L : (u, v) ∈ R} regular
(similarly for many other language classes)
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Today’s setting

replace free monoid Γ∗ by trace monoid M.

Definition
• independence alphabet: (Γ, I ) with I ⊆ Γ∗ symmetric

• ∼: least congruence on Γ∗ with ab ∼ ba for all (a, b) ∈ I
i.e. u ∼ v iff u can be re-arranged into v by transposing

neighboring independent letters
e.g. (with (a, b) ∈ I and (a, c) /∈ I ):

aabcba ∼ abacab ∼ baacab 6∼ baaacb
• trace monoid M = Γ∗/∼:

elements are equivalence classes [u] of words u
concatenation: [u] · [v ] := [uv ]
neutral element: [u] · [ε] = [ε] · [u] = [u]

• R ⊆M×M rational iff constructible from finite relations by
union ∪, concatenation ·, and iteration ∗.
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Today’s question

Definition
R ⊆M×M rational iff constructible from finite relations by union
∪, concatenation ·, and iteration ∗.

General question

Which of the properties of rational word relations survive this
abstraction?

Example

(a, b) /∈ I , (c , d) ∈ I

R1 =
{

([a], [c])
}+ ·

{
([b], [d ])

}+
=

{
([ambn], [cmdn])

∣∣ m, n ≥ 1
}

R2 =
{

([dncm], [bnam])
∣∣ m, n ≥ 1

}
=

{
([cmdn], [bnam])

∣∣ m, n ≥ 1
}

R1 ◦ R2 =
{

([ambn], [bnam])
∣∣ m, n ≥ 1

}
not rational /
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Analysis of counter example

(a, b) /∈ I , (c , d) ∈ I

R1 =
{

([ambn], [cmdn])
∣∣ m, n ≥ 1

}
R2 =

{
([dncm], [bnam])

∣∣ m, n ≥ 1
}

R1 ◦ R2 6= ∅ not rational

• Observation: R ⊆M2 rational iff there exists R ⊆ Σ∗ × Σ∗

rational s.t. R = [R] :=
{

([u], [v ])
∣∣ (u, v) ∈ R

}
.

• here R1 =
{

(ambn, cmdn)
∣∣ m, n ≥ 1

}
R2 =

{
(dncm, bnam)

∣∣ m, n ≥ 1
}

=⇒ ∃t, u, u′, v ′ ∈ Σ∗ : t R1 u ∼ u′ R2 v
′ and u 6= u′

=⇒ R1 ◦ R2 = ∅, R1 ◦ R2 6= ∅

7 / 10
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Our salvation comes from ...

Definition
R ⊆ Σ∗ × Σ∗ left-closed if ∼ ◦ R ⊆ R ◦ ∼, i.e.,

∃u′ : u ∼ u′ R v ′ =⇒ ∃v : u R v ∼ v ′ .

R is lc-rational if it is left-closed and rational.
R ⊆M2 lc-rational if

there exists R ⊆ Σ∗ × Σ∗ lc-rational with R = [R].

Since this definition problem from example:

Theorem
Let R1,R2 ⊆ Σ∗ × Σ∗ be rational.

• R2 left-closed =⇒ [R1 ◦ R2] = [R1] ◦ [R2].

• R1 and R2 left-closed =⇒ R1 ◦ R2 left-closed.
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Further properties

Let K,L ⊆M non-empty, R ⊆M×M.

1. K × L lc-rational iff
• K recognizable (i.e., {u ∈ Σ∗ | [u] ∈ K} regular) and
• L rational (i.e., there is L ⊆ Σ∗ regular with L = [L])

2.

R lc-rational, K recognizable
=⇒ RK × {[ε]} = R ◦

(
K × {[ε]}

)
lc-rational

=⇒ RK recognizable.

3. L rational, R lc-rational
=⇒ {[ε]} × LR =

(
{[ε]} × L}

)
◦ R lc-rational

=⇒ LR rational

4. K × L, R lc-rational =⇒ (K × L) · R lc-rational
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An application

Theorem
Let P be a cPDS (i.e. PDS with trace pushdown s.t. ...) and p, q
states of P.
The reachability relation R =

{
([u], [v ])

∣∣ (p, [u]) `∗ (q, [v ])
}

is
lc-rational.

Corollary (cf. Köcher & Kuske FCT’23)

• forwards reachability preserves rationality:
p, q states of P, L ⊆M rational

=⇒
{

[v ] ∈M
∣∣ ∃[u] ∈ L : (p, [u]) `∗ (q, [v ])

}
= LR rational

• backwards reachability preserves recognizability:
p, q states of P, K ⊆M recognizable

=⇒
{

[u] ∈M
∣∣ ∃[v ] ∈ K : (p, [u]) `∗ (q, [v ])

}
= RK rec.
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