
Properties of polyregular functions

*

Miketaj Bojarczyk ↳ Thänk Düng (Titol Nguyen

University of Warsaw ENS Lyon
Sandra Kiefer
University of Oxford

Nathan Lhote Cécilia Pradic

Aix-Marseille Université Swansee University

Gl Theorietag 2023

Kaiserslautern



Regular functions



Regular functions

Regular languages are the anes "expressible" via -> DFA
-> NFA
-

2-way
FA

-> regular expressions
-> MSO



Regular functions

Regular languages are the anes "expressible" via -> DFA
-> NFA

-> 2-way
FA

war expressionsreg
-> MSO

Let's generalise from languages LE
* to functions f:

E
***.

To this end, we consider transducers, automata with output

-> Tito's transducer simulation (
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2-way F pressionsregular

Let's generalise from languages LE
* to functions f:

E
***.

To this end, we consider transducers, automata with output

-> Tito's transducer simulation (
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How can we modify the model to go beyond linear growth?

We equip the 2-way transducers with multiple reading heads
,

which can also serve as markers ("pebbles") .

↳

K
-> Tito's pebble transducer simulation > j

T

h

⑤
C

d
C

b

A

&-
W

f(w)



Pebble transducers
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Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n
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The proof employs the definition of polyregular functions via for-programs

Then, for 1
: order formula = reachability between program states

So it remains to prave:

Functions computable by
Functions defnable via

I

for-programs string-to-string interpretations

That is: every MSo-definable total erder implicity respects stack discipline .

To show this "demination of variables", we use:

· simen's factorisation forest theorem Hinduction)

every string can be cut into pieces that ar similar

↑> "blocks"
· our Domination Lomma

tuples from distind blocks obey stack discipline
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but it essentially says that
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That is, for every "type" of position tuples, there
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always a dominating
coordinate, which determines the relation

Consider the following toy result on a single type of tuples

Every quantifier-free total order an

{) Xe, --,Xx) : x. ... X are rationals)
is lexicographic

k = 1

: y(x, y) = xxyay(x,) = yex

k =

2

: Case analysis of possible relations between pairs

kx2: Reduction to k =2
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Every quantifier-free total order an

{) Xe, --,Xx) : x. ... X are rationals)
is lexicographic

To show damination for >2, we use the case k = 2
.

Thus, for every
pac of coordinates, there

is

a dominating one .

Ther it suffices to show that domination is transitive, i . e.

i -j 1j - d = i - d

~ One coordinate daminates globally?
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· output positions are -tuples of input positions > f(w) >OlIW1")

Infinite state) polynomial"growth rate"

What about the converse?

Polyregular functions = the functions definable via string-to-string
MSO interpretations

·

Does the growth-rate exparent coincide with the dimension
?

TES!
* polyregular function has output size O(n)

.

=>C

The function con be defined via a k-dimensional MSO interpretation .

(Bojarczyk (23)

Does the number of needed pebbles also match ther
?

Clearly, it holds that : pebbles > O(n4) growth
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· output positions are -tuples of input positions > f(w) >OlIW1")

Infinite state) polynomial"growth rate"

What about the converse?

Does growth-rate exparent h imply that k pebbles suffice?

No
!

No constant number of pebbles sufices to compute all
& I

polyregular functions with growth rate exponent k =

2.

·arczyk /23](Boj
* to main result in LCS 2020 paper

For example, innsq Pebble z
-

innsai Wo . --#Wn
w

!#
...
#we

all wi E{a ,33
*

Our contribution: Easier proofs for the above [k ., Nguyer, Pradic 23]

This talk: Easier proof for innsaePebblea
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Wo# ... #Wn is wo#... *Wn" (all wieha ,b)*)

It suffices to show:

No function
in

Pebblez concides with insq a (ab#)*#*

Assume that there is such a function

1) using the arguments from the next slide

Then there must be (Ib{a, b)*b that

·

is

the output of some way tranducer (i.
e. the image of a regular function)

· consists of infixes of elements
in

innsq((a*#)*#
*

)

· contains for every NEIN a
word ba

...

ab
... ba

...

ab with at hast N b's
- -
alle-blocks have length n3 N

We apply a pumping argament to to conclude that it cannot exist .
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In [K ., Nguyen, Pradic 23], we show that a slightly stranger result actually

follows quickly gran old results due to (Engelfiet, Maneth "01]
.


