Properties of pdyregular functions

Mikotaj Bojanczyk University of Warsaw

Nathan Lhote
Aix-Marseille Université

Lê Thàrh Düng (Tito) Ngleyễn ens Lyan
Sandra kiefer
univessity of axford
Cécilia Pradic
Swarsee University

GI Theorietag 2023 Kaiserslautern

Regular functions

Regular functions
Regular Languages are the ones "expressible" via \rightarrow MFA

$$
\rightarrow \text { NFA }
$$

$\rightarrow 2$-way $F A$
\rightarrow requlos expressions
\rightarrow Moo

Regular functions
Regular Languages are the anas "expressible" via \rightarrow DEA

$$
\rightarrow \text { MFA }
$$

$\rightarrow 2$-way $\mp A$
\rightarrow requlos expressions
\rightarrow Mo

Let's generalise from languages $L \subseteq \Sigma^{*}$ to functions $f: \Sigma^{*} \rightarrow \Gamma^{*}$. To this end, we consider transducers, automat with output.
\rightarrow Tito's transducer simulation \longleftarrow

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

\triangleright	a	b	c	$\#$	b	a	c	$\#$	c	b	\triangleleft

Output:

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output:

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: a

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: $a b$

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abcc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccb

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#b

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#ba

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#bac

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#bac

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#bacc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#bacca

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

\triangleright	a	b	c	$\#$	b	a	c	$\#$	c	b	\triangleleft

Output: abccba\#baccab\#

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab\#c

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab\#cb

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

\triangleright	a	b	c	$\#$	b	a	c	$\#$	c	b	\triangleleft

Output: abccba\#baccab\#cb

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

\triangleright	a	b	c	$\#$	b	a	c	$\#$	c	b	\triangleleft

Output: abccba\#baccab\#cbb

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab\#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab\#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

\triangleright	a	b	c	$\#$	b	a	c	$\#$	c	b	\triangleleft

Output: abccba\#baccab\#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab\#cbbc

Regular functions
Regular Languages are the anas "expressible" via \rightarrow DEA

$$
\rightarrow \text { MFA }
$$

$\rightarrow 2$-way $\mp A$
\rightarrow requlos expressions
\rightarrow Mo

Let's generalise from languages $L \subseteq \Sigma^{*}$ to functions $f: \Sigma^{*} \rightarrow \Gamma^{*}$. To this end, we consider transducers, automat with output.
\rightarrow Tito's transducer simulation \longleftarrow

Regular functions
Regular Languages are the ones "expressible" via \rightarrow MFA

$$
\rightarrow N F A
$$

$\rightarrow 2$-way $\mp A$
\rightarrow regulos expressions
$\rightarrow \mathrm{MOO}$

Let's generalise from languages $L \subseteq \Sigma^{*}$ to functions $f: \Sigma^{*} \rightarrow \Gamma^{*}$.
To this end, we consider transducers, automat with output.
\rightarrow Tito's transducer simulation \longleftarrow

Regular functions = functions computed by deterministic 2-way transducers

Regular functions
Regular Languages are the ones "expressible" via \rightarrow MFA

$$
\rightarrow N F A
$$

$\rightarrow 2$-way $\mp A$
\rightarrow revlon exp
\rightarrow requlos expressions

Let's generalise from languages $L \subseteq \Sigma^{*}$ to functions $f: \Sigma^{*} \rightarrow \Gamma^{*}$.
To this end, we consider transducers, automate with output.
\rightarrow Tito's transducer simulation \longleftarrow

Regular functions = functions computed by deterministic 2-way transducers

Those form a well-understad class with nice properties:

- closed under composition
- preimages of regular languages are regular

Regular functions
Regular Languages are the ones "expressible" via \rightarrow MFA

$$
\rightarrow N F A
$$

$\rightarrow 2$-way $\mp A$
\rightarrow requlor exp
\rightarrow regulos expressions
\rightarrow Moo
Let's generalise from languages $L \subseteq \Sigma^{*}$ to functions $f: \Sigma^{*} \rightarrow \Gamma^{*}$.
To this end, we consider transducers, automate with output.
\rightarrow Tito's transducer simulation \longleftarrow

Regular functions = functions computed by deterministic 2-way transducers

Those form a well-understad class with nice properties:

- closed under composition
- preimages of regular languages are regular
- robust, many equivalent definitions, e.g. MSO transductions

From "regular" to "polyregular"
Regular functions = functions computed by deterministic 2-way transducers

For regular functions, the output length is always at most linear in the input length: $f(|w|)=O(|w|)$

From "regular" to "polyregular"
Regular functions = functions computed by deterministic 2-way transducers
For regular functions, the output length is always at most linear in the input length: $f(|w|)=\sigma(|w|)$

How can we modify the model to go beyond linear growth?

From "regular" to "polyregular"
Regular functions $=$ functions computed by deterministic 2-way transducers
For regular functions, the output length is always at most linear in the input length: $f(|\omega|)=O(|\omega|) \quad \Rightarrow$ linear growth rate

How can we modify the model to go beyond linear growth?
We equip the 2-way transducers with multiple reading heads, which can Also serve as markers ("pebbles").
\rightarrow Tito's pebble transducer simulation \leftarrow

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

\triangleright	a	b	c	$\#$	b	a	c	$\#$	c	b	\triangleleft

Output:

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output:

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output:

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output:

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output:

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output:

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output:

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: a

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: $a b$

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: $a b c$

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: $a b c$

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: $a b c$

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: $a b c$

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: $a b c$

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: $a b c$

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: $a b c$

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abca

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcab

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#b

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#ba

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bac

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bac

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bac

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bac

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bac

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bac

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bac

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bac

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bac

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bac

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bac

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacb

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacba

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#c

Pebble transducers

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cbc

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cbcb

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cbcb

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cbcb

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cbcb

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cbcb

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cbcb

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cbcb

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cbcb

From "regular" to "polyregular"
Regular functions $=$ functions computed by deterministic 2-way transducers
For regular functions, the output length is always at most linear in the input length: $f(|\omega|)=O(|\omega|) \quad \Rightarrow$ linear growth rate

How can we modify the model to go beyond linear growth?
We equip the 2-way transducers with multiple reading heads, which can Also serve as markers ("pebbles").
\rightarrow Tito's pebble transducer simulation \leftarrow

From "regular" to "polyregular"
Regular functions = functions computed by deterministic 2-way transducers
For regular functions, the output length is always at most linear in the input length: $f(|w|)=O(|w|)$

How can we modify the model to 80 beyond linear growth?
We equip the 2-way transducer with multiple reading heads, which can also serve as markers ("pebbles").
\rightarrow Tito's pebble transducer simulation \leftarrow
Configurations now depend on all k reading heads. Thus, $f(|w|)=\sigma\left(|w|^{k}\right)$

The history
Idea: introduce multiple reading heads to enable polynomial growth

The history
Idea: introduce multiple reading heads to enable polynomial growth
without further restrictions, the expressive power is LOGSPACE.
[1barra'71, Hartmaris'72]
\Rightarrow Impose stack discipline.

Pebble transducers

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$

Finite states + stack of height $\leqslant k$ of two-way heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

The history
Idea: introduce multiple reading heads to enable polynomial growth
without further restrictions, the expressive power is LOGSPACE.
[1barra'71, Hartmaris'72]
\Rightarrow Impose stack discipline.

- "Pebble (tree) transducers"

The history
Idea: introduce multiple reading heads to enable polynomial growth
without further restrictions, the expressive power is LOGSPACE.
[1barra'71, Hartmaris'72]
\Rightarrow Impose stack discipline.

- "Pebble (tree) transducers"

Kilo, Suciu, Viand 'oo]

- String-to-string pebble transolucers
[Angel fret, Mareth 'O2] are closed under composition

The history
Idea: introduce multiple reading heads to enable polynomial growth
without further restrictions, the expressive power is LOGSPACE.
[1barra'71, Hartmaris'72]
\Rightarrow Impose stack discipline.

- "Pebble (tree) transducers"

Kilo, Suciu, Viand 'oo]

- String-to-string pebble transolucers
[Angel Greet, Mareth 'O2] are closed under composition
- "Pdyregular functions"
[Bojańczyk '18]

The history
Idea: introduce multiple reading heads to enable polynomial growth
Without further restrictions, the expressive power is LOGSPACE.
[1barra'71, Hartmaris'72]
\Rightarrow Impose stack discipline.

- "Pebble (tree) transducers"

Kilo, Suciu, Viand 'oo]

- String-ta-string pebble transolucers
[Angel Greet, Mareth 'O2] are closed under composition
- "Pdyregular functions"
[Bojańczyk '18]
cere charaderised via - s-to-s pebde transducers
- dosure of a certain class of s-to-s functions

The history
Idea: introduce multiple reading heads to enable polynomial growth
Without further restrictions, the expressive power is LOGSPACE.
[1barra'71, Hartmaris'72]
\Rightarrow Impose stack discipline.

- "Pebble (tree) transducers"

Kilo, Suciu, Viand 'oo]

- String-to-string pebble transolucers [Angel Greet, Mareth 'O2] are closed under composition
- "Pdyregular functions"
[Bojańczyk '18]
cere charaderised via s-to-s pebde transducers
- closure of a certain class of s-to-s functions
- a fragment of λ-calculus
- Jor - programs

The history
Idea: introduce multiple reading heads to enable polynomial growth
without further restrictions, the expressive power is LOGSPACE.
[1barra'71, Hartmaris'72]
\Rightarrow Impose stack discipline.

- "Pebble (tree) transducers"
[Kilo, Suciu, Viand 'oo]
- String-to-string pebble transolucers
[Angel Greet, Mareth 'O2] are closed under composition
- "Pdyregular functions"
[Bojańczyk '18]
are charaderised via. s-to-s pebble transducers
- closure of a certain class of s-to-s functions
- a fragment of λ-calculus
- Jor - programs
- s-tors MSO interpretations

This talk!

Polyregular functions

- map strings to strings
$a b c d \mapsto a b c d a b c a b a$

Polyregular functions

- map strings to strings $a b c d \mapsto a b c d a b a b a$
- positions in the output string "are" k-tuples of positions in the input string (finite state)

Polyregular functions

- map strings to strings $a b c d \mapsto a b c d a b a b a$
- positions in the output string "are" k-tuples of positions in the input string (finite state)

Polyregular functions

- map strings to strings $\quad a b c d \mapsto a \quad a \mid b c d \quad a b c a b a$
- positions in the output string "are" k-tuples of positions in the input string (finite state)

Polyregular functions

- positions in the output string "are" k-tuples of positions in the input string (finite state)

Polyregular functions

- positions in the output string "are" k-tuples of positions in the input string (+finite \$late)

Polyregular functions

- map strings to strings $\quad a b c d \mapsto$		4	2	3	4	1	2	3	1	2
4		4	3	3	3	2	2			
4	d	a	b	c	a	b	a			
- positions in the output string "are" k-tuples of positions in the input string (+finite state)

Polyregular functions

- map strings to strings

$$
\begin{array}{ll|l|l|l|l|l|l|l|l|l}
& & 1 & 2 & 3 & 4 & 1 & 2 & 3 & \hat{4} & 2 \\
4 & 4^{2} & 4 & 3 & 3 & 3 & \hat{2} & 2 & \hat{1} \\
a & a & b & c & d & a & b & c & a & b & a
\end{array}
$$

- positions in the output string "are" k-tuples of positions in the input string (+finite state)

Polyregular functions

- map strings to strings

		1	2	3	4	1	2	3	$\hat{4}$	2
4	4	4^{2}	4	3	3	3	$\hat{2}$	2	$\hat{1}$	
a	a	b	c	d	a	b	c	a	b	a

- positions in the output string "are" k-tuples of positions in the input string
- characterisations via: pebble transducers for-programs
combinators
Logics

Polyregular functions

- map strings to strings

- positions in the output string "are" k-tuples of positions in the input string
- characterisations via: pebble transducers
combinators
(finite state) for-prograns
for-prograns are of the shape
for $:=n$ to 1
for $j=1$ to n
if $j \leqslant i$ output $w(j)$

Polyregular functions

- map strings to strings

- positions in the output string "are" k-tuples of positions in the input string
- characterisations via:
pebble transducers for-programs
combinators Logics
for-prograns are of the shape
for-Loops correspond to spawned pebbles (a position masters) in the transducers.

The pebbles obey a stack discipline.

Polyregular functions - Logical charaderisation
Concatenation of prefixes

$$
\begin{array}{ll|l|l|l|l|l|l|l|l|l}
& \hat{4} & 2 & 3 & 4 & 4 & 4 & & \\
a b c d & a & b & c & d & a & b & c & a & b & a
\end{array}
$$

$$
\begin{aligned}
& \text { for }:=n \text { to } 1 \\
& \text { for } j=1 \text { to } n \\
& \text { if } j \leqslant i \text { output } w(j)
\end{aligned}
$$

Polyregular functions - Logical charaderisation
Concatenation of prefixes

We can describe the output via
for $:=n$ to 1
for $j=1$ to n if $j \leqslant i$ output $\omega(j)$

- a domain formula $\varphi_{\text {dom }}(i, j)=j \leq i$
- a total-arder formula $\varphi \leq\left(i, j, i^{\prime}, j^{\prime}\right)=\left(i \geq i^{\prime}\right) \vee\left(\left(i=i^{\prime}\right) \wedge\left(j \leq j^{\prime}\right)\right)$
- Label formulas $\varphi_{a}(i, j)=a(j)$

Polyregular functions - Logical charaderisation
concatenation of prefixes

We can describe the output via

goo $i=n$ to	1
goo $j=1$ to	
if	$j \leqslant i$
output $w(j)$	

- a domain formula $\varphi_{\text {don }}(i, j)=j \leq i$
- a total-arder formula $\varphi \leq(i, j, i, j)=\left(i \geq i^{\prime}\right) v\left(\left(i=i^{\prime}\right) \wedge\left(j \leq j^{\prime}\right)\right)$
- Labe formulas $\quad \varphi_{a}(i, j)=a(j)$

Together, the formulae describe a 2-d.m. String-to-string interpretation. MSO transductions for regular functions $=1$-dimensional case

Polyregular functions - Logical charaderisation
concatenation of prefixes

We can describe the output via

goo $i=n$ to	1
for $j j-1$ to	
if	$j \leqslant i$
output	$\omega(j)$

- a domain formula $\varphi_{\text {don }}(i, j)=j \leq i$
- a total-arder formula $\varphi \leq(i, j, i, j)=\left(i \geq i^{\prime}\right) v\left(\left(i=i^{\prime}\right) \wedge\left(j \leq j^{\prime}\right)\right)$
- Labe formulas $\quad \varphi_{a}(i, j)=a(j)$

Together, the formulae describe a 2-dim. String-to-string interpretation. MSO transductions for regular functions $=1$-dimensional case

$$
\text { Pdyregular functions }=\text { the functions definable via string-ta-string }
$$ MSO interpretations

Polyregular functions - Logical charaderisation

$$
\text { Polyregular functions }=\text { the fenctions definatbe via string-ta-string }
$$ MSO interpretations

Polyregular functions - Logical charaderisation
Polyregular functions $=$ the functions definable via string-ta-string MSO interpretations

Consider the inner squaring function

$$
\begin{array}{rlrl}
\text { innsa; } & w_{0} \# \ldots \# w_{n} & \mapsto & w_{0}^{n} \# \ldots \# w_{n}^{n} \quad \text { all } w_{i} \in\{a, b\}^{*} \\
a b a \# b a a \# b b & \mapsto a b a a b a \# b a a b a a \# b b b
\end{array}
$$

Polyregular functions - Logical charaderisation
Pdyregular functions $=$ the functions definable via string-ta-string MSO interpretations

Consider the inner squaring function

$$
\begin{array}{rlrl}
\text { innsa; } w_{0} \# \ldots \# \omega_{n} & \mapsto \omega_{0}^{n} \# \ldots \# \omega_{n}^{n} \quad a l l \\
w_{i} \in\{a, b\}^{*} \\
a b a \# b a a \# b b & \mapsto & a b a a b a \# b a a b a a \# b b b b
\end{array}
$$

Polyregular functions - Logical charaderisation
Pdyregular functions $=$ the functions definable via string-ta-string MSO interpretations

Consider the inner squaring function

$$
\begin{array}{rlrl}
\text { inns; } & w_{0} \# \ldots \# w_{n} & \mapsto & w_{0}^{n} \# \ldots \# w_{n}^{n} \quad \text { all } w_{i} \in\{a, b\}^{*} \\
a b a \# b a a \# b b & \mapsto a b a a b a \# b a a b a a b b b b
\end{array}
$$

We define the corresponding MSO interpretation.

- (domain \&) label formulas

$$
\begin{aligned}
& \varphi_{a}(i, j)=\#(i) \wedge a(j) \\
& \varphi_{b}(i, j)=\#(i) \wedge b(j)
\end{aligned} \quad \varphi_{\#}(i, j)=\max (i) \wedge \#(j)
$$

Polyregular functions - Logical charaderisation
Pdyregular functions $=$ the functions definable via string-ta-string MSO interpretations

Consider the inner squaring function

$$
\begin{array}{rlrl}
\text { innsa; } & w_{0} \# \ldots \# w_{n} & \mapsto & w_{0}^{n} \# \ldots \# w_{n}^{n} \quad a l l \\
w_{i} \in\{a, b\}^{*} \\
a b a \# b a a \# b b & \mapsto a b a a b a \# b a a b a a \# b b \leq b
\end{array}
$$

We define the corresponding MSO interpretation.

- (domain \&) label formulas

$$
\begin{aligned}
& \varphi_{a}(i, j)=\#(i) \wedge a(j) \quad \varphi_{\#}(i, j)=\max (i) \wedge \#(j) \\
& \varphi_{b}(i, j)=\#(i) \wedge b(j) \\
&-\varphi_{\leq}\left(i, j, i^{\prime}, j\right)=(\#(j) \wedge(j \leq j)) \\
& \vee \exists s^{\prime}, s:\left((s \leq j) \wedge s^{\prime} \leq j^{\prime}\right)
\end{aligned}
$$

\wedge \# neither between s, j nor between s^{\prime}, j '
\wedge neither s nor s ' has a direct predecessor a or b
\wedge (lexicographically $(s, i j) \leqslant\left(s^{\prime}, i^{\prime}, j^{\prime \prime}\right)$

Polyregular functions - Logical charaderisation
Polyregular finctions $=$ the functions definatle via string-ta-string MSO interpretations

The proog emplays the definition of pdyregular fenctions via for-programs.

Polyregular functions - Logical charaderisation
Polyregular functions $=$ the functions definable via string-ta-string MSO interpretations

The prog employs the definition of pdyregular functions via for-programs.
Then, for \subseteq : order formula \equiv reachability between program states

Polyregular functions - Logical charaderisation
Polyrgular functions $=$ the functions definable via string-ta-string MSO interpretations

The proof employs the definition of pdyregular functions via for-prograns.
Then, for \subseteq : order formula \equiv reachability between program states
So it remains to prove:

Functions computable by
for-programs

Functions definable via string-to-string interpretations

That is: every MSO-definable total order implicitly respects start discijhne.

Polyregular functions - Logical charaderisation
Polyrgular functions $=$ the functions definable via string-ta-string MSO interpretations

The proof employs the definition of pdyregular functions via for-prograns.
Then, for \subseteq : order formula \equiv reachability between program states
So it remains to prove:
Functions computable by
for-programs
Functions definable via string-to-string interpretations

That is: every MSO-definable total adder implicitly respects stack discijhne.
To show this "domination of variables", we use:

- Simon's factorisation foreot theorem (tinducher) every string can be wit into pieces that verisimilar T"blocks"

Polyregular functions - Logical charaderisation
Polyrgular functions $=$ the functions definable via string-ta-string MSO interpretations

The proof employs the definition of pdyregular functions via for-programs.
Then, for \subseteq : order formula \equiv reachability between program states
So it remains to prove:
Functions computable by
for-programs
Functions definable via string-to-string interpretations

That is every MSO-definable total acer implicitly respects stack discipline.
To show this "domination of variables", we use:

- Simon's factorisation foreot theorem (tinducher) every string can be wit into pieces that are similar
- our Domination Lemma t"blacks" tuples from distind boors obey stack disciplthe

Domination on rationals

Domination on rationals
The domination lemma is very technical, but it essentially says that every FO-definable linear order< an position tuples doeys an implicit stack discipline.

Domination on rationals
The domination lemma is very technical, but it essentially says that every FO-definable linear order $<$ on position tuples doeys an implicit stack discipline.
That is, for every "type" of position tuples, there is always a dominating coordinate, which determines the < relation.

Domination on rationals
The domination lemma is very technical, but it essentially says that every FO-definable linear order < an position tuples doeys an implicit stack discipline.

That is, for every "type" of position tuples, there is always a dominating coordinate, which determines the $<$ relation.

Consider the following toy result on a single type of tuples.
Every quantifier-free total order an

$$
\left\{\left(x_{1}, \ldots, x_{k}\right): x_{1}<\ldots<x_{k} \text { are rationals }\right\}
$$

is (exicographic.

Domination on rationals
The domination lemma is very technical, but it essentially says that every FO-definable linear order < an position tuples doeys an implicit stack discipline.

That is, for every "type" of position tuples, there is always a dominating coordinate, which determines the $<$ relation.

Consider the following toy result an a single type of tuples.
Every quantifier-free total order an

$$
\left\{\left(x_{1},-1, x_{k}\right): x_{1}<\ldots<x_{k} \text { are rationals }\right\}
$$

is Lexicographic.

$$
k=1: \quad \varphi_{\leq}(x, y)=x \leq y \quad o \quad \varphi \leq(x, y)=y \leq x
$$

Domination on rationals
The domination lemma is very technical, but it essentially says that every FO-definable linear order < an position tuples doeys an implicit stack discipline.
That is, for every "type" of position tuples, there is always a dominating coordinate, which determines the $<$ relation.

Consider the following toy result on a single type of tuples.
Every quantifier-free total order on

$$
\left\{\left(x_{1},-1, x_{k}\right): x_{1}<\ldots<x_{k} \text { are rationals }\right\}
$$

is (exicographic.

$$
k=1: \quad \varphi_{\leq}(x, y)=x \leq y \quad o \quad \varphi \leq(x, y)=y \leq x
$$

$k=2$: Case analysis of possible relations between pairs

Domination on rationals
The domination lemma is very technical, but it essentially says that every FO-definable linear order < an position tuples doeys an implicit stack discipline.
That is, for every "type" of position tuples, there is always a dominating coordinate, which determines the $<$ relation.

Consider the following toy result on a single type of tuples.
Every quantifier-free total order an

$$
\left\{\left(x_{1},-1, x_{k}\right): x_{1}<\ldots<x_{k} \text { are rationals }\right\}
$$

is (exicographic.

$$
k=1: \quad \varphi_{\leq}(x, y)=x \leq y \quad o r \quad \varphi \leq(x, y)=y \leq x
$$

$k=2$: Case analysis of possible relations between pairs
$k>2$: Reduction to $k_{2}=2$

Domination on rationals : $k>2$

Every quantifier-free total order an

$$
\left\{\left(x_{1},-1 x_{k}\right): x_{1}<\ldots<x_{k} \text { are rationals }\right\}
$$ is lexicographic.

Domination on rationals : $k>2$
Every quantifier-free total order an

$$
\left\{\left(x_{1}, \ldots, x_{k}\right): x_{1}<\ldots<x_{k} \text { are rationals }\right\}
$$

is lexicographic.
To show domination for $r>2$, we use the case $r=2$.
Thus, for every pair of coordinates, there is a dominating one.

Domination on rationals : $k>2$
Every quantifier-free total order on

$$
\left\{\left(x_{1}, \ldots, x_{k}\right): x_{1}<\ldots<x_{k} \text { are rationals }\right\}
$$ is lexicographic.

To show domination for $r>2$, we use the case $r=2$.
Thus, for every pair of coordinates, there is a dominating one.
Then it suffices to show that domination is transitive, i.e.

$$
i \rightarrow j \wedge j \rightarrow d \Rightarrow i \rightarrow d
$$

Domination on rationals : $k>2$

Every quantifier-free total order an

$$
\left\{\left(x_{1}, \ldots, x_{k}\right): x_{1}<\ldots<x_{k} \text { are rationals }\right\}
$$ is lexicographic.

To show domination for $r>2$, we use the case $k=2$.
Thus, for every pair of coordinates, there is a dominating one.
Then it suffices to show that domination is transitive, i.e.

$$
i \rightarrow j \wedge j \rightarrow d \quad \Rightarrow \quad i \rightarrow d
$$

Step 1. Move coordinate i to its final position, and move j so that the tuple grows

Step 2. Move coordinate j back to the initial, position and move m to its final position

Domination on rationals : $k>2$
Every quantifier-free total order an $\left\{\left(x_{1}, \ldots, x_{k}\right): x_{1}<\ldots<x_{k}\right.$ are rationals $\}$ is lexicographic.

To show domination for $r>2$, we use the case $r=2$.
Thus, for every pair of coordinates, there is a dominating one.
Then it suffices to show that domination is transitive, i.e.

$$
i \rightarrow j \wedge j \rightarrow d \Rightarrow i \rightarrow d
$$

Step 1. Move coordinate i to its final position, and move j so that the tuple grows

Step 2. Move coordinate j back to the initial, position and move m to its final position
\rightarrow One coordinate dominates globally:

Polyregular functions: Growth

- output positions are k-tuples of input positions $\Rightarrow \mid f\left(\omega| | \in O\left(|\omega|^{k}\right)\right.$
(+finite state) polynomial "growth rate"

Polyregular functions: Growth

- output positions are k-tuples of input positions $\Rightarrow \mid f\left(\omega| | \in O\left(|\omega|^{k}\right)\right.$
(+finite state) polynomial "growth rate"
What about the converse?

Polyregular functions: Growth

- output positions are k-tuples of input positions $\Rightarrow|f(\omega)| \in O\left(|\omega|^{k}\right)$
(+finite state) polynomial "growth rate"
What about the converse?
Pdyregular functions $=$ the functions definable via string-ta-string MSO interpretations

Does the grouth-rate exponent coincide with the dimension?

Polyregular functions: Growth

- output positions are k-tuples of input positions $\Rightarrow \mid f\left(\omega| | \in O\left(|\omega|^{k}\right)\right.$
(+finite state) polynomial "growth rate"
What about the converse?
Pdyregular functions $=$ the functions definable via string-ta-string MSO interpretations

Does the grouth-rate exponent coincide with the dimension?
A polyregular function has output size $\sigma\left(n^{k}\right)$.
The function can be defined via a k-dimensional MSO interpretation.
[Bojoinczyk '23]

Polyregular functions: Growth

- output positions are k-tuples of input positions $\Rightarrow \mid f\left(\omega| | \in O\left(|\omega|^{k}\right)\right.$
(+finite state)
polynomial "growth rate"
What about the converse?
Pdyregular functions $=$ the functions definable via string-ta-string MSO interpretations

Does the growth-rate exponent coincide with the dimension?
A polyregular function has output size $\sigma\left(n^{k}\right)$.
The function can be defined via a k-dimensional MSO interpretation.
[Bojańczyk '23]
Does the number of needed pebbles also match then?

Polyregular functions: Growth

- output positions are k-tuples of input positions $\Rightarrow|f(\omega)| \in O\left(|\omega|^{k}\right)$
(+finite state)
polynomial "growth rate"
What about the converse?

$$
\begin{aligned}
\text { Pdyregular functions }= & \text { the functions definable via string-ta-string } \\
& \text { MSO interpretations }
\end{aligned}
$$

Does the growth-rate exponent coincide with the dimension?
A polyregular function has output size $\sigma\left(n^{k}\right)$.
The function can be defined via a k-dimensional MSO interpretation.
[Bojoinczyk '23]
Does the number of needed peldoles also match then? clearly, it hods that: B pebbles $\Rightarrow \sigma\left(n^{k}\right)$ growth

Polyregular functions: Logical charaderisation
Polyregular finctions $=$ the functions definatle via string-ta-string MSO interpretations

Consider the inner squaring function

$$
\begin{array}{rlrl}
\text { innsa; } & w_{0} \# \ldots \# w_{n} & \mapsto & w_{0}^{n} \# \ldots \# w_{n}^{n} \quad \text { all } w_{i} \in\{a, b\}^{*} \\
a b a \# b a a \# b b & \mapsto a b a a b a \# b a a b a a \# b b b
\end{array}
$$

Polyregular functions: Logical charaderisation
Pdyregular functions $=$ the functions definable via string-ta-string MSO interpretations
[${ }^{3}$ ajañazyk, k. Lh ate '19]
Consider the inner squaring function

$$
\begin{array}{rlrl}
\text { innsa; } & w_{0} \# \ldots \# w_{n} & \mapsto & w_{0}^{n} \# \ldots \# w_{n}^{n} \quad \text { all } w_{i} \in\{a, b\}^{*} \\
a b a \# b a a \# b b & \mapsto a b a b a \# b a a b a a \# b b b
\end{array}
$$

We define the corresponding MSO transduction.

- (domain \&) Label formulas

$$
\begin{aligned}
& \varphi_{a}(i, j)=\#(i) \wedge a(j) \quad \varphi_{\#}(i, j)=\max (i) \wedge \#(j) \\
& \varphi_{b}(i, j)=\#(i) \wedge b(j) \\
& \text { - } \varphi_{\leq}\left(i, j, i^{\prime}, j\right)=(\#(j) \wedge(j \leq j)) \\
& \vee \exists s^{\prime}, s:\left((s \leq j) \wedge s^{\prime} \leq j^{\prime}\right)
\end{aligned}
$$

\wedge \# neither between s, j nor between s^{\prime}, j '
\wedge neither s nor s has a direct predecessor a or b
\wedge (exicographically $(s, i, j) \leqslant\left(s^{\prime}, i, j^{\prime \prime}\right)$

Polyregular functions: Logical charaderisation
Polyregular functions $=$ the fanctions definatle via string-ta-string MSO interpretations

Consider the inner squarng function

$$
\begin{aligned}
& \text { innsa: } w_{0} \# \ldots \# w_{n} \mapsto w_{0}^{n} \# \ldots w_{n}^{n} \quad \text { all } w_{c} \in\{0,5\}^{*} \\
& a b a \# b a a \# b b \mapsto a b a a b a \# b a a b a a \# b b b b
\end{aligned}
$$

Polyregular functions: Logical charaderisation
Polyregular functions $=$ the functions definable via string-ta-string MSO interpretations

Consider the inner squaring function

$$
\begin{array}{rlrl}
\text { innsa: } w_{0} \# . . . \# w_{n} & \mapsto \omega_{0}^{n} \# \ldots \# \omega_{n}^{n} \quad a l l \\
w_{i} \in\{a, b\}^{*} \\
a b a \# b a a \# b b & \mapsto & a b a a b a \# b a a b a a \# b b b b
\end{array}
$$

It looks like we need 3 pebbles:

Polyregular functions: Logical charaderisation
Polyregular functions $=$ the functions definable via string-ta-string MSO interpretations
[${ }^{3}$ ojañazyk, K. White '19]
Consider the inner squaring function

$$
\begin{aligned}
\text { innsa: } w_{0} \# . . . \# w_{n} & \mapsto \omega_{0}^{n} \# \ldots \# \omega_{n}^{n} \quad \text { all } w_{i} \in\{0, b\}^{*} \\
a b a \# b a a \# b b & \mapsto a b a a b a \# b a a b a a \# b b \hookrightarrow b
\end{aligned}
$$

It looks like we need 3 pebbles:

1) one to mark the (beginning of the) currently copied subword wi
2) one to count the copies that are output
3) one to actually copy the current subward w_{i}

Polyregular functions: Logical charaderisation
Polyregular functions = the functions definable via string-ta-string MSO interpretations

Consider the inner squaring function

$$
\begin{array}{rlrl}
\text { innsa: } w_{0} \# . . . \# w_{n} & \mapsto \omega_{0}^{n} \# \ldots \# \omega_{n}^{n} \quad a l l \\
w_{i} \in\{a, b\}^{*} \\
a b a \# b a a \# b b & \mapsto & a b a a b a \# b a a b a a \# b b b b
\end{array}
$$

It lo dis like we need 3 pebbles:

1) one to mark the (beginning of the) currently copied subword wi
2) ne to count the copies that are output
3) one to actually copy the current subward w_{i}

Does grouth-rate exponent k imply that k pebbles suffice?

Polyregular functions: Growth

- output positions are k-tuples of input positions $\Rightarrow|f(\omega)| \in O\left(|\omega|^{k}\right)$
(+finite state) polynomial "growth rate"
What about the converse?
Does grouth-rate exponent k imply that k pebbles suffice?

Polyregular functions: Growth

- output positions are k-tuples of input positions $\Rightarrow|f(\omega)| \in O\left(|\omega|^{k}\right)$
(+finite state) polynomial "growth rate"
What about the converse?
Does grouth-rate exponent k imply that k pebbles suffice?

NO! No constant number of pebbles suffices to compute all polyregular functions with growth rate exponent $k=2$.

Ito main result in LUCS 2020 paper

Polyregular functions: Growth

- output positions are k-tuples of input positions $\Rightarrow|f(\omega)| \in O\left(|\omega|^{k}\right)$
(+finite state) polynomial "growth rate"
What about the converse?
Does grouth-rate exponent k imply that k pebbles suffice?

NO! No constant number of pebbles suffices to compute all polyregular functions with growth rate exponent $k=2$.

Ito main result in LAs 2020 paper
For example, inns \& Pebble 2.

$$
\begin{gathered}
\text { innsa; } \\
\text { all } w_{i} \in\{0,3,3\}^{n} \\
w_{0} \# \# w_{0}^{n} \# \ldots \# w_{n}^{n} \\
\hline
\end{gathered}
$$

Polyregular functions: Growth

- output positions are k-tuples of input positions $\Rightarrow|f(\omega)| \in O\left(|\omega|^{k}\right)$
(+finite state)
polynomial "growth rate"
What about the converse?
Does grouth-rate exponent k imply that k pebbles suffice?

NO! No constant number of pebbles suffices to compute all pdyregular functions with growth rate exponent $k=2$.
Ito main reowet in LUCs 2020 paper
For example, insp \& Pebble 2.

Our contribution: Easter proofs for the above.
[k. Nguyen, Pradic '23]
This tall e: Easier proof for innsq \ddagger Pebble 2.

Inner squaring cannot be done with 2 pebbles

$$
\begin{aligned}
\text { inns: }\{a, b, \#\}^{*} & \rightarrow\{a, b, \#\}^{*} \\
w_{0} \# \ldots w_{n} & \mapsto w_{0}^{n} \# \ldots w_{n}^{n} \quad\left(\text { all } w_{i} \in\{a, b\}^{*}\right)
\end{aligned}
$$

Inner squaring cannot be done with 2 pebbles
inns: $\{a, b, \#\}^{*} \rightarrow\{a, b, \#\}^{*}$
$w_{0} \# \ldots w_{n} \longmapsto w_{0}^{n} \# \ldots \# w_{n}^{n} \quad\left(\right.$ all $\left.w_{i} \in\{a, b\}^{*}\right)$
It suffices to show:
No function in Pebble coincides with insp an ($a^{*} b_{\#)^{*}}^{*} \not \#^{*}$.
Assume that there is such a function.

Inner squaring cannot be done with 2 pebbles
inns: $\{a, b, \#\}^{*} \rightarrow\{a, b, \#\}^{*}$
$w_{0} \# \ldots w_{n} \longmapsto w_{0}^{n} \# \ldots \# w_{n}^{n} \quad\left(\right.$ all $\left.w_{i} \in\{a, b\}^{*}\right)$
It suffices to show:
Na function in Pebble z coincides with innsq an ($\left.a^{*} b \#\right)^{*} \not A^{*}$.
Assume that there is such a function.
using the arguments from the next slide

Then there must be $L \leq b\{a, b\}^{*} b$ that

Inner squaring cannot be done with 2 pebbles
inns: $\{a, b, \#\}^{*} \rightarrow\{a, b, \#\}^{*}$
$w_{0} \# \ldots w_{n} \longmapsto w_{0}^{n} \# \ldots \# w_{n}^{n} \quad\left(\right.$ all $\left.w_{i} \in\{a, b\}^{*}\right)$
It suffices to show:
No function in Pebble coincides with insp an ($a^{*} b_{\#)^{*}}{ }^{*} \not{ }^{*}$.
Assume that there is such a function.
using the arguments from the next slide

Then there must be $L \leq b\{a, b\}^{*} b$ that

- is the output of some 2-way transducer (i.e. the coinage of a regular function)

Inner squaring cannot be done with 2 pebbles
inns: $\{a, b, \#\}^{*} \rightarrow\{a, b, \#\}^{*}$
$w_{0} \# \ldots w_{n} \longmapsto w_{0}^{n} \# \ldots \# w_{n}^{n} \quad\left(\right.$ all $\left.w_{i} \in\{a, b\}^{*}\right)$
It suffices to show:
No function in Pebble coincides with insp an ($a^{*} b_{\#)^{*}}{ }^{*} \not{ }^{*}$.
Assume that there is such a function.
using the arguments from the next slide

Then there must be $L \leq b\{a, b\}^{*} b$ that

- is the output of sone 2-way transducer (i.e. the coinage of a regular function)
- consists of infixes of elements in innsq $\left(\left(a^{*} b \#\right)^{*} \#{ }^{* *}\right)$

Inner squaring cannot be done with 2 pebbles
inns: $\{a, b, \#\}^{*} \rightarrow\{a, b, \#\}^{*}$
$w_{0} \# \ldots w_{n} \longmapsto w_{0}^{n} \# \ldots w_{n}^{n} \quad\left(\right.$ all $\left.w_{i} \in\{a, b\}^{*}\right)$
It suffices to show:
No function in Pebble coincides with insp an ($a^{*} b_{\#)^{*}}{ }^{*} \not{ }^{*}$.
Assume that there is such a function.
using the arguments from the next slide

Then there must be $L \leq b\{a, b\}^{*} b$ that

- is the output of some 2-way transducer (i.e. the coinage of a regular function)
- consists of infixes of elements in inns $\left.\left(\left(a^{*} b \#\right)^{* *} \#\right)^{*}\right)$
- contains for every N eN a word $\underbrace{a \ldots a b}_{\text {all } \ldots \text {-bars nave lengthen } n \geqslant N}$ with $a t$ least N bs.

Inner squaring cannot be done with 2 pebbles
inns: $\{a, b, \#\}^{*} \rightarrow\{a, b, \#\}^{*}$
$w_{0} \# \ldots w_{n} \longmapsto w_{0}^{n} \# \ldots w_{n}^{n} \quad\left(\right.$ all $\left.w_{i} \in\{a, b\}^{*}\right)$
It suffices to show:
No function in Pebble coincides with insp an ($a^{*} b_{\#)^{*}}{ }^{*} \not{ }^{*}$.
Assume that there is such a function.
using the arguments from the next slide

Then there must be $L \leq b\{a, b\}^{*} b$ that

- is the output of some 2-way transducer (i.e. the coinage of a regular function)
- consists of infixes of elements in innsq $\left.\left(\left(a^{*} b \#\right)^{* *} \#\right)^{*}\right)$
- contains for every N eN a word $\underbrace{a \ldots a b}_{\text {all } \ldots \text {-bars nave lengthen } n \geqslant N}$ with $a t$ least N bs.

We apply a pumping argavent to L to conclude that it cannot exist.

Inner squaring cannot be done with 2 pebbles
Assume there is $f \in$ Pebble z that coincides with innsg on $\left(a^{*} b \neq\right)^{*} \|^{*}$ ",

Inner squaring cannot be done with 2 pebbles
Assume there is $f \in$ Pebble $_{2}$ that coincides with innsg on $\left(a^{*} b \not\right)^{*} \#^{*}$,

f can be obtained by adequately nesting regular functions.

Inner squaring cannot be done with 2 pebbles
Assume there is $f \in$ Pebble z that coincides with innsg on $\left(a^{*} b \#\right)^{*} \#^{*}$,

I can be obtained by adequately nesting regular functions,
Those having linear growth, the "inner functions" can only produce linearly long infixes.
Consider $\left(a^{n} b \#\right)^{n} \#^{n \cdot m} \xrightarrow{i n n s q}\left(\left(a^{n} b\right)^{n \cdot m+n+1} \#\right)^{n} \#^{n \cdot m}$.

Inner squaring cannot be done with 2 pebbles
Assume there is $f \in$ Pebble z that coincides with innsg on $\left(a^{*} b \#\right)^{*} \#^{*}$,

I can be obtained by adequately nesting regular functions,
Those having linear growth, the "inner functions" can only produce linearly long infixes.
Consider $\left(a^{n} b \not \#\right)^{n} \#^{n \cdot m} \xrightarrow{\text { inns }}\left(\left(a^{n} b\right)^{n \cdot m+n+1} \#\right)^{n} \#^{n \cdot m}$.
\Rightarrow subcomputations produce $\leq 1 \#$ ear.
But there must be one that produces $\geqslant N$ b's an one side of the $\#$. We obtain a) (ab($\left.a^{n} b\right)^{r} a \times(a$. (fa some $n, r \geqslant N)$.

Inner squaring cannot be done with 2 pebbles
Assume there is $f \in$ Pebble, that coincides with innsg on $\left(a^{*} b \#\right)^{*} \#^{*}$,

I can be obtained by adequately nesting regular functions,
Those having linear growth, the "inner functions" can only produce linearly lang infixes.
Consider $\left(a^{n} b \not \#^{n} \#^{n \cdot m} \xrightarrow{\text { inns }}\left(\left(a^{n} b\right)^{n \cdot m+n+1} \#\right)^{n} \#^{n \cdot m}\right.$.
\Rightarrow subcomputations produce $\leq 1 \#$ ead.
But there must be one that produces $\geqslant N$ b's an one side of the $\#$, We obtain a). $\left.a b\left(a^{n} b\right)^{r} a\right)(a$. (for same $n, r \geqslant N)$.

This way, we construct $L \leq b\{a, b\}^{*} b$ that

- is the coinage of a regular function
- consists of infixes of elements in innsq $\left(\left(a^{*} b \#\right)^{* *} \#\right.$ **
- contains for every N eN a $\underbrace{b a \ldots a v e ~ l e n g t e r ~}_{\text {all } a-b a r s} n \geqslant N$ with $a t$ least N b's.

Inner squaring cannot be done with 2 pebbles
$L \leq b\{a, b\}^{*} b$ is a regular image that

- consists of infixes of elements in inns $\left(\left(a^{*} b \#\right)^{* *} \# *\right)$

Inner squaring cannot be done with 2 pebbles
$L \leq b\{a, b\}^{*} b$ is a regular image that

- consists of infixes of elements in inns $\left(\left(a^{*} b \#\right)^{*} \# *\right)$
- contains for every NeT a word $\underbrace{b a \quad a b \ldots a b}_{\text {an a-ddase nave leger } n \geqslant N}$ with at least N b's.

There are $k_{1} K \in \mathbb{N}$ such that every wed with $|w| \geqslant K$ has a decomposition $w=u_{0} v_{1} u_{1} \ldots v_{k} u_{k}$ with $\cdot v_{i} \neq \varepsilon$ for some $i \in\left\{1_{1} \ldots, k\right\}$
[Rozoy '86] PUMPING LEMMA

- $\left|v_{1}\right| \leq k$ for all $: \in\{1, \ldots, k\}$
- $\left\{u_{0} v_{1}^{n} \ldots u_{k-1} v_{k}^{n} u_{k} \mid n \in \mathbb{N}\right\} \leq L$

Inner squaring cannot be done with 2 pebbles
$L \leq b\{a, b\}^{*} b$ is a regular image that

- consists of infixes of elements in innsq $\left(\left(a^{*} b \#\right)^{* *} \# *\right)$

There are $k, k \in \mathbb{N}$ such that every $w \in L$ with $|w| \geqslant K$ has a decomposition $W=u_{0} v_{1} u_{1} \ldots v_{k} u_{k}$ with $\cdot v_{i} \neq \varepsilon$ for some $i \in\{1, \ldots, k\}$
[Rozoy'86] PUMPING LEMMA

- $\left|v_{1}\right| \leq k$ for all $i \in\{1, \ldots, k\}$
- $\left\{u_{0} v_{1}^{n} \ldots u_{k-1} v_{k}^{n} u_{k} \mid n \in \mathbb{N}\right\} \leq L$

For $N:=\max \{K, 2 k+2\}$, we obtain $a b\left(a^{n} b\right)^{r} \in L$ with $n \geqslant N \geqslant k, r \geqslant N \geqslant 2 k+1$.
Hence, $b\left(a^{n} b\right)^{r}=u_{0} v_{1} u_{1} \ldots v_{k} u_{k}$ and $\underbrace{u_{0} v_{1}^{2} u_{1} \ldots v_{k}^{2} u_{k}}_{=: z} e L$.

Inner squaring cannot be done with 2 pebbles
$L \leq b\{a, b\}^{*} b$ is a regular image that

- consists of infixes of elements in inns $\left(\left(a^{*} b \#\right)^{* *} \# *\right)$

There are $k_{1} k \in \mathbb{N}$ such that every wed with $|w| \geqslant K$ has a decomposition $w=u_{0} v_{1} u_{1} \ldots, v_{k} u_{k}$ with $\cdot v_{i} \neq \varepsilon$ for some $i \in\{1, \ldots, k\}$
[Rozoy'86] PUMPING LEMMA
- $\left|v_{i}\right| \leq k$ for all $: \in\{1, \ldots, k\}$
- $\left\{u_{0} v_{1}^{n} \ldots u_{k-1} v_{k}^{n} u_{k} \mid n \in \mathbb{N}\right\} \leq L$

For $N:=\max \{k, 2 k+2\}$, we obtain $a \quad b\left(a^{n} b\right)^{r} \in L$ with $n \geqslant N \geqslant k, r \geqslant N \geqslant 2 k+1$. Hence, $b\left(a^{n} b\right)^{r}=u_{0} v_{1} u_{1} \ldots v_{k} u_{k}$ and $\underbrace{u_{0} v_{1}^{2} u_{1} \ldots v_{k}^{2} u_{k}}_{=: z} e L$.
Each v_{i} contains at most one b. \Rightarrow There is a u_{j} which confound two b's.
Thus, $b a^{n} b$ is an infix of $z . \quad \Rightarrow$ All a-blocks in z have fixed length n.

Inner squaring cannot be done with 2 pebbles
$L \leq b\{a, b\}^{*} b$ is a regular image that

- consists of infixes of elements in inns $\left(\left(a^{*} b \#\right)^{* *} \# *\right)$

There are $k_{1} k \in \mathbb{N}$ such that every wed with $|w| \geqslant K$ has a decomposition $w=u_{0} v_{1} u_{1} \ldots, v_{k} u_{k}$ with $\cdot v_{i} \neq \varepsilon$ for some $i \in\{1, \ldots, k\}$
[Rozoy '86] PUMPING LEMMA
- $\left|v_{i}\right| \leq k$ for all $: \in\{1, \ldots, k\}$
- $\left\{u_{0} v_{1}^{n} \ldots u_{k-1} v_{k}^{n} u_{k} \mid n \in \mathbb{N}\right\} \leq L$

For $N:=\max \{k, 2 k+2\}$, we obtain $a \quad b\left(a^{n} b\right)^{r} \in L$ with $n \geqslant N \geqslant k, r \geqslant N \geqslant 2 k+1$. Hence, $b\left(a^{n} b\right)^{r}=u_{0} v_{1} u_{1} \ldots v_{k} u_{k}$ and $\underbrace{u_{0} v_{1}^{2} u_{1} \ldots v_{k}^{2} u_{k}}_{=: z} e L$.
Each v_{i} contains at most one b. \Rightarrow There is $a u_{j}$ which contains two b's.
Thus, $b a^{n} b$ is an infix of $z . \quad \Rightarrow$ All a-blocks in z have fixed length n.
Case (1): Some v_{r} contains ab. $\$$

Inner squaring cannot be done with 2 pebbles
$L \leq b\{a, b\}^{*} b$ is a regular image that

- consists of infixes of elements in inns $\left(\left(a^{*} b \#\right)^{* *} \# *\right)$
- contains for every NeT a word $\underbrace{a \ldots a b \ldots}_{\text {all } \ldots \text {-dar nave length } n \geqslant N}$ with $a t$ least N b's.

There are $k_{1} k \in \mathbb{N}$ such that every wed with $|w| \geqslant K$ has a decomposition $w=u_{0} v_{1} u_{1} \ldots v_{k} u_{k}$ with $\cdot v_{i} \neq \varepsilon$ for some $i \in\{1, \ldots, k\}$
[Rozoy'86] PUMPING LEMMA

- $\left|v_{i}\right| \leq k$ for all $: \in\{1, \ldots, k\}$
- $\left\{u_{0} v_{1}^{n} \ldots u_{k-1} v_{k}^{n} u_{k} \mid n \in \mathbb{N}\right\} \leq L$

For $N:=\max \{k, 2 k+2\}$, we obtain $a \quad b\left(a^{n} b\right)^{r} \in L$ with $n \geqslant N \geqslant k, r \geqslant N \geqslant 2 k+1$. Hence, $b\left(a^{n} b\right)^{r}=u_{0} v_{1} u_{1} \ldots v_{k} u_{k}$ and $\underbrace{u_{0} v_{1}^{2} u_{1} \ldots v_{k}^{2} u_{k}}_{=: z} e L$.
Each v_{i} contains at most one b. \Rightarrow There is $a u_{j}$ which contains two b's.
Thus, $b a^{n} b$ is an infix of $z . \quad \Rightarrow$ All a-blocks in z have fixed length n.
Case (1): Some v_{r} contains $a b$. $\$$ Case (2): All v_{i} are in a^{*}. I

Conclusion
Pdyregular functions are s-t o-s functions with podynomial-size output.

Conclusion
Pdyregular functions are s-to-s functions with podynomial-size autput. They have various equivalent characterisations, e.g.
f is polyregular

f is recognised by a s-to-s pebble transducer
$\therefore \Leftrightarrow f$ is computed by a for-progran

If [Bojainczyle, K., Lhate '19]
f io defined by a s-to-s MSO interpretation

Conclusion
Pdyregular functions are s-t o-s functions with podynomial-size output. They have various equivalent characterisations, e.g.

Fdlow-up wat and concepts:

- Pdyblind functions - comparisons between pebble positions are not allowed

Conclusion
Pdyregular functions are s-t o-s functions with podynomial-size output. They have various equivalent characterisations, e.g.

Fdlow-up wat and concepts:

- Pdyblind functions - comparisons between pebble positions are not allowed
- \mathbb{Z}-pdyregular functions - functions sum. f, where $f: \Sigma^{+} \rightarrow\{ \pm 1\}^{+}$is pdyregular [Colcombet, Dovéneau-Tabst, Lopez '23]

Conclusion
f is polyregular of growth rate $\sigma\left(n^{k}\right)$
f io defined by a k-dim. s-to-s MSO interpretation

I!
f is recognised by a k-pebble s-t os pebble transducer

Conclusion
f is polyregular of growth rate $\sigma\left(n^{k}\right)$
f in defined by a k-dim. s-to-s MSO interpretation

In
f is recognised by a k-pebble
s-t os pebble transducer

$$
\begin{aligned}
\text { inns: }:\{a, b, \#\}^{*} & \rightarrow\{a, b, \#\}^{*} \\
w_{0} \# \ldots \# w_{n} & \mapsto w_{0}^{n} \# \ldots \# w_{n}^{n} \quad\left(\text { all } w_{i} \in\{a, b\}^{*}\right)
\end{aligned}
$$

For example, inns requires 3 pebbles, but inns $(w) \in \sigma\left(|w|^{2}\right)$.

Conclusion
f is polyregular of growth rate $\sigma\left(n^{k}\right)$

$$
\Longleftrightarrow
$$

I!
f in defined by a k-dim. s-to-s MSO interpretation
f is recognised by a k-pebble s-t os pebble transducer

$$
\begin{aligned}
\text { inns: }\{a, b, \#\}^{*} & \rightarrow\{a, b, \#\}^{*} \\
& w_{0} \# \ldots \# w_{n}
\end{aligned}>w_{0}^{n} \# \ldots w_{n}^{n} \quad\left(\text { all } w_{i} \in\{a, b\}^{*}\right)
$$

For example, inns requires 3 pebbles, but inns $(w) \in \sigma\left(|w|^{2}\right)$.
There are also quadratic-grouth polyrgular functions $\left(f_{k}\right)_{k \in N}$ where $f_{k} \notin$ Pebble $_{k}$ for each $k \in \mathbb{N}$.

Concussion
f is polyregular of

growth rate $\sigma\left(n^{k}\right)$$\quad \Longleftrightarrow \quad$| f in defined by a k-dim. |
| :--- |
| s-to-s Mso interpretation |

$$
\text { 或 } \quad \mathbb{T}
$$

f is recognised by a k-pebble s-toss pebble transducer

$$
\begin{aligned}
\text { innsq: }:\{a, b, \#\}^{*} & \rightarrow\{a, b, \#\}^{*} \\
w_{0} \# \ldots w_{n} & \mapsto w_{0}^{n} \# \ldots w_{n}^{n} \quad\left(\text { all } w_{i} \in\{a, b\}^{*}\right)
\end{aligned}
$$

For example, inns requires 3 pebbles, but inns $(w) \in \sigma\left(|w|^{2}\right)$.
There are also quadratic-growth polyregular functions $\left(f_{k}\right)_{k \in N}$ where $f_{k} \notin$ Pebble $_{k}$ for each $k \in \mathbb{N}$. [see Bojariciyk '23]

In [K., Nguyen, Pradic 23], we show that a slightly stranger result actually follows quidly gram dd results due to [Engelfret, Maneth '01].

