
Properties of polyregular functions

*

Miketaj Bojarczyk ↳ Thänk Düng (Titol Nguyen

University of Warsaw ENS Lyon
Sandra Kiefer
University of Oxford

Nathan Lhote Cécilia Pradic

Aix-Marseille Université Swansee University

Gl Theorietag 2023

Kaiserslautern

Regular functions

Regular functions

Regular languages are the anes "expressible" via -> DFA
-> NFA
-

2-way
FA

-> regular expressions
-> MSO

Regular functions

Regular languages are the anes "expressible" via -> DFA
-> NFA

-> 2-way
FA

war expressionsreg
-> MSO

Let's generalise from languages LE
* to functions f:

E
***.

To this end, we consider transducers, automata with output

-> Tito's transducer simulation (

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε

#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output:

abccba#baccab#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε

#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output:

abccba#baccab#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε

#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: a

bccba#baccab#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε

#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: ab

ccba#baccab#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε

#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abc

cba#baccab#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε

#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abc

cba#baccab#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε

#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abcc

ba#baccab#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε

#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abccb

a#baccab#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε

#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abccba

#baccab#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abccba

#baccab#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abccba

#baccab#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abccba

#baccab#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abccba

#baccab#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε

#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓

Output: abccba#

baccab#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε

#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓

Output: abccba#b

accab#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε

#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓

Output: abccba#ba

ccab#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε

#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓

Output: abccba#bac

cab#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε

#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓

Output: abccba#bac

cab#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε

#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓

Output: abccba#bacc

ab#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε

#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓

Output: abccba#bacca

b#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε

#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abccba#baccab

#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓

Output: abccba#baccab

#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓

Output: abccba#baccab

#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓

Output: abccba#baccab

#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓

Output: abccba#baccab

#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε

#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓

Output: abccba#baccab#

cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε

#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓

Output: abccba#baccab#c

bbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε

#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

Output: abccba#baccab#cb

bc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε

#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓

Output: abccba#baccab#cb

bc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε

#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓

Output: abccba#baccab#cbb

c

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε

#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓

Output: abccba#baccab#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓

Output: abccba#baccab#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓

Output: abccba#baccab#cbbc

Two-way transducers (mentioned in [Shepherdson 1958]!)

Example: w1# . . .#wn !−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, !|ε

#, !|ε

x|x

x|x

#, #|ε

#, #|ε

x|ε

x|ε

#|#

#|#

!|ε

!|ε

(x ∈ {a, b, c})

! a b c # b a c # c b "

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

Output: abccba#baccab#cbbc

Regular functions

Regular languages are the anes "expressible" via -> DFA
-> NFA

-> 2-way
FA

war expressionsreg
-> MSO

Let's generalise from languages LE
* to functions f:

E
***.

To this end, we consider transducers, automata with output

-> Tito's transducer simulation (

Regular functions

Regular languages are the anes "expressible" via -> DFA
-> NFA

-> 2-way
FA

war expressionsreg
-> MSO

Let's generalise from languages LE
* to functions f:

E
***.

To this end, we consider transducers, automata with output

-> Tito's transducer simulation (

Regular functions = functions computed by deterministic 2-way transducers

Regular functions

Regular languages are the anes "expressible" via -> DFA
-> NFA
->

2-way F pressionsregular

Let's generalise from languages LE
* to functions f:

E
***.

To this end, we consider transducers, automata with output

-> Tito's transducer simulation (

Regular functions = functions computed by deterministic 2-way transducers

Those form a well-understood class with nice properties:

· closed under composition
· preimages of regular languages are regular

Regular functions

Regular languages are the anes "expressible" via -> DFA
-> NFA
->

2-way F pressionsregular

Let's generalise from languages LE
* to functions f:

E
***.

To this end, we consider transducers, automata with output

-> Tito's transducer simulation (

Regular functions = functions computed by deterministic 2-way transducers

Those form a well-understood class with nice properties:

· closed under composition
· preimages of regular languages are regular
· robust, many equivalent definitions, e. g.

MSO transductions

Fram "regular" to "polyregular"
Regular functions = functions computed by deterministic 2-way transducers

For regular functions, the output length in always
at most linear

in the input length: f(lw1) = O(lwl => Linear growth rate

Fram "regular" to "polyregular"
Regular functions = functions computed by deterministic 2-way transducers

For regular functions, the output length in always
at most linear

in the input length: f(lw1) = O(lwl => Linear growth rate

How can we modify the model to go beyond linear growth?

Fram "regular" to "polyregular"
Regular functions = functions computed by deterministic 2-way transducers

For regular functions, the output length in always
at most linear

in the input length: f(lw1) = O(lwl => Linear growth rate

How can we modify the model to go beyond linear growth?

We equip the 2-way transducers with multiple reading heads
,

which can also serve as markers ("pebbles") .

↳

K
-> Tito's pebble transducer simulation > j

T

h

⑤
C

d
C

b

A

&-
W

f(w)

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output:

abcabc#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output:

abcabc#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output:

abcabc#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output:

abcabc#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output:

abcabc#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output:

abcabc#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

↓

"

" " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output:

abcabc#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

↓

"

"

" "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: a

bcabc#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

↓

" "

"

"

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: ab

cabc#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

↓

" " "

"

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abc

abc#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abc

abc#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓

↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abc

abc#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓

↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abc

abc#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓

↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abc

abc#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓

↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abc

abc#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓

↓

"

" " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abc

abc#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓

↓

"

"

" "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abca

bc#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓

↓

" "

"

"

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcab

c#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓

↓

" " "

"

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc

#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓

↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc

#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓

↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc

#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓

↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc

#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓
↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc

#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#

bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓

↓ ↓ ↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#

bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓

↓

↓ ↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#

bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓

↓

↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#

bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓

↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#

bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓

↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#

bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓

↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#

bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓

↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#

bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓

↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#

bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

"

" " "

↓ ↓ ↓

↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#

bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

"

"

" "

↓ ↓ ↓

↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#

bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" "

"

"

↓ ↓ ↓

↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#

bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " "

"

↓ ↓ ↓

↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#

bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓

↓

"

" " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#

bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓

↓

"

"

" "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#b

acbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓

↓

" "

"

"

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#ba

cbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓

↓

" " "

"

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#bac

bac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓

↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#bac

bac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓

↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#bac

bac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓

↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#bac

bac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓

↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#bac

bac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓

↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#bac

bac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓
↓

"

" " "

↓ ↓ ↓

↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#bac

bac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓
↓

"

"

" "

↓ ↓ ↓

↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#bac

bac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓
↓

" "

"

"

↓ ↓ ↓

↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#bac

bac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓
↓

" " "

"

↓ ↓ ↓

↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#bac

bac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓

↓

"

" " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#bac

bac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓

↓

"

"

" "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#bacb

ac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓

↓

" "

"

"

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#bacba

c#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓

↓

" " "

"

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#bacbac

#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓

↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#bacbac

#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓
↓

" " " "

↓ ↓ ↓

↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#bacbac

#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓
↓

" " " "

↓ ↓ ↓

↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#bacbac

#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

↓

" " " "

↓ ↓ ↓

↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#bacbac

#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓

↓

" " " "

↓ ↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#bacbac#

cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓

↓ ↓ ↓

" " "

↓ ↓

Output: abcabc#bacbac#

cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓

↓

↓ ↓

" " "

↓ ↓

Output: abcabc#bacbac#

cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓

↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#

cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#

cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#

cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#

cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#

cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#

cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

"

" " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#

cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

"

"

" "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#

cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" "

"

"

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#

cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " "

"

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#

cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

"

" " "

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#

cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

"

"

" "

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#

cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" "

"

"

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#

cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" " "

"

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#

cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

"

" "

↓ ↓

Output: abcabc#bacbac#

cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

"

"

"

↓ ↓

Output: abcabc#bacbac#c

bcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

" "

"

↓ ↓

Output: abcabc#bacbac#cb

cb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#cb

cb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#cb

cb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#cb

cb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#cb

cb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#cb

cb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓
↓

"

" " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#cb

cb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓
↓

"

"

" "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#cb

cb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓
↓

" "

"

"

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#cb

cb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓
↓

" " "

"

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#cb

cb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

"

" " "

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#cb

cb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

"

"

" "

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#cb

cb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" "

"

"

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#cb

cb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" " "

"

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#cb

cb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

"

" "

↓ ↓

Output: abcabc#bacbac#cb

cb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

"

"

"

↓ ↓

Output: abcabc#bacbac#cbc

b

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

" "

"

↓ ↓

Output: abcabc#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓
↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓ ↓

" " "

↓

↓

Output: abcabc#bacbac#cbcb

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

" " " "

↓ ↓ ↓ ↓

" " "

↓

↓

Output: abcabc#bacbac#cbcb

Fram "regular" to "polyregular"
Regular functions = functions computed by deterministic 2-way transducers

For regular functions, the output length in always
at most linear

in the input length: f(lw1) = O(lwl => Linear growth rate

How can we modify the model to go beyond linear growth?

We equip the 2-way transducers with multiple reading heads
,

which can also serve as markers ("pebbles") .

↳

K
-> Tito's pebble transducer simulation > j

T

h

⑤
C

d
C

b

A

&-
W

f(w)

Fram "regular" to "polyregular"
Regular functions = functions computed by deterministic 2-way transducers

For regular functions, the output length in always
at most linear

in the input length: f(lw1) = O(lwl => Linear growth rate

How can we modify the model to go beyond linear growth?

We equip the 2-way transducers with multiple reading heads
,

which can also serve as markers ("pebbles") .

↳

K
-> Tito's pebble transducer simulation > j

T

h

Configurations now depend a all K ⑤
Creading heads . Thus, Allull = O(Iw14)
d
C

b

A

&-
W

f(w)

The history
Idea : introduce multiple reading heads to enable polynomial growth

The history
Idea : introduce multiple reading heads to enable polynomial growth

without further restrictions, the expressive power is LOGSPACE .

[Ibarra '71, Hartmanis'72]
=> Impose stack discipline

Pebble transducers
Polyregular functions = computed by k-pebble transducers (k ≥ 1)
Finite states + stack of height ! k of two-way heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn "−→ (w0)n# . . .#(wn)n

! a b c # b a c # c b "

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓

⇓ ⇓ ⇓
↓

" " " "

↓ ↓ ↓ ↓

"

"

" "

↓ ↓ ↓

↓

" " "

↓ ↓

Output: abcabc#bacbac#cb

cb

The history
Idea : introduce multiple reading heads to enable polynomial growth

without further restrictions, the expressive power is LOGSPACE .

[Ibarra '71, Hartmanis'72]
=> Impose stack discipline

· "Pebble (tree) transducers" [Milo, Suciu, Vianu'00

The history
Idea : introduce multiple reading heads to enable polynomial growth

without further restrictions, the expressive power is LOGSPACE .

[Ibarra '71, Hartmanis'72]
=> Impose stack discipline

· "Pebble (tree) transducers" [Milo, Suciu, Vianu'00

· String-to-string pebble transcucers [Engelfriet, Maneth '02]
are closed under composition

The history
Idea : introduce multiple reading heads to enable polynomial growth

without further restrictions, the expressive power is LOGSPACE .

[Ibarra '71, Hartmanis'72]
=> Impose stack discipline

· "Pebble (tree) transducers" [Milo, Suciu, Vianu'00

· String-to-string pebble transcucers [Engelfriet, Maneth '02]
are closed under composition

· "Pdyregular functions
(1

[Bojarczyk (18)

The history
Idea : introduce multiple reading heads to enable polynomial growth

without further restrictions, the expressive power is LOGSPACE .

[Ibarra '71, Hartmanis'72]
=> Impose stack discipline

· "Pebble (tree) transducers" [Milo, Suciu, Vianu'00

· String-to-string pebble transcucers [Engelfriet, Maneth '02]
are closed under composition

J· "Pdyregular functions
(1

[Bojarczyk 18

are characterised via s-to-s pebble transducers

· dosure of a certain class of s-to-s functions

The history
Idea : introduce multiple reading heads to enable polynomial growth

without further restrictions, the expressive power is LOGSPACE .

[Ibarra '71, Hartmanis'72]
=> Impose stack discipline

· "Pebble (tree) transducers" [Milo, Suciu, Vianu'00

· String-to-string pebble transcucers [Engelfriet, Maneth '02]
are closed under composition

S
(1

J· "Pdyregular function [Bojarczyk 18

are characterised via s-to-s pebble transducers

· dosure of a certain class of s-to-s functions

· a fragment of X-calculus
·

for-programs

The history
Idea : introduce multiple reading heads to enable polynomial growth

without further restrictions, the expressive power is LOGSPACE .

[Ibarra '71, Hartmanis'72]
=> Impose stack discipline

· "Pebble (tree) transducers" [Milo, Suciu, Vianu'00

· String-to-string pebble transcucers [Engelfriet, Maneth '02]
are closed under composition

J· "Pdyregular functions
(1

[Bojarczyk 18

are characterised via s-to-s pebble transducers

· dosure of a certain class of s-to-s functions

· a fragment of X-calculus
·

for-programs
· s-to-s M50 interpretations

X
This talk

P regular functionsPolyregular
·

map strings to strings abed +s a b c d a b < ab a

&

ulaulaPolyReg functions
·

map strings to strings abed +s a b c d a b < ab a

· positions in the output string "are" k-tuples of positions
in

the input string
Etfinite state)

&

ulaulaPolyReg functions
-

·

map strings to strings abed +s a b c d a b < ab a

· positions in the output string "are" k-tuples of positions
in

the input string
Etfinite state)

&

ulaulaPolyReg functions
↑

·

map strings to strings abed +s a b c d a b < ab a

· positions in the output string "are" k-tuples of positions
in

the input string
Etfinite state)

&

ulaulaPolyReg functions
= 44

·

map strings to strings abed +s a b c d a b < ab a

· positions in the output string "are" k-tuples of positions
in

the input string
Etfinite state)

&

ulaPolyRegular functions ↑ 3

·

map strings to strings abed +s a b c d a b < ab a

· positions in the output string "are" k-tuples of positions
in

the input string
Etfinite state)

&

ulaPolyRegular functions =
·

map strings to strings abed +s a b c d a b < ab a

· positions in the output string "are" k-tuples of positions
in

the input string
Etfinite state)

&

ulaPolyRegular functions =
·

map strings to strings abed +s a b c d a b < ab a

· positions in the output string "are" k-tuples of positions
in

the input string
Etfinite state)

&

ulaPolyRegular functions =
·

map strings to strings abed +s a b c d a b < ab a

· positions in the output string "are" k-tuples of positions
in

the input string
· characterisations via: pebble transducers combinators

(finite state)

for-programs Logies

&

ulaPoly war functionsReg =
·

map strings to strings abed +s a b c d a b < ab a

· positions in the output string "are" k-tuples of positions
in

the input string
Etfinite state)

· characterisations via: pebble transducers combinators

for-programs Logies

far-programs are of the shape for in to 1

for
j
= 1 to n

&

if jai output w(j)

ulaPoly war functionsReg =
·

map strings to strings abed +s a b c d a b < ab a

· positions in the output string "are" k-tuples of positions
in

the input string
· characterisations via: pebble transducers combinators

(finite state)

for-programs Logies

far-programs are of the shape for in to 1

for
j
= 1 to n

&

if jai output w(j)

↳

K
for-Loops correspond to spawned pebbles

j
T

position markers) in the transducers.
h

⑤
The pebbles obey a stack discipline C

d
C

b

A

&-
W

f(w)

Polyregular functions - Logical characterisation

Concatenation of prefixes
=

abed +s a b c d a b < ab a

for in to 1

for
j
= 1 to n

if jai output w(j)

Polyregular functions - Logical characterisation

Concatenation of prefixes
=

abed +s a b c d a b < ab a

We can describe the autput vie

for in to 1
· a domain formula (dom(i,j) = j

for
j
= 1 to n · a total order formula ylijij =(ziv)i=injj')

if jai output w(j)
· Label formulas Ya(i ,j) = a(j)

Polyregular functions - Logical characterisation

Concatenation of prefixes
=

abed +s a b c d a b < ab a

We can describe the autput vie

for in to 1
· a domain formula (dom(i,j) = j

for
j
= 1 to n · a total order formula ylijij =(ziv)i=injj')

if jai output w(j)
· Label formulas Ya(i ,j) = a(j)

Together, the formular describe a 2-dim
. string-to-string interpretation

MSO transductions for regular functions
= 1 -dimensional case

Polyregular functions - Logical characterisation

Concatenation of prefixes
=

abed +s a b c d a b < ab a

We can describe the autput vie

for in to 1
· a domain formula (dom(i,j) = j

for
j
= 1 to n · a total order formula yalijij =(ziv)i=i"njj')

-

if jai output w(j)
· Label formulas Ya(i ,j) = a(j)

Together, the formular describe a 2-dim
. string-to-string interpretation

MSO transductions for regular functions
= 1 -dimensional case

Polyregular functions the functions definable via string-to-string
MSO interpretations

[Bojarazyk, K .,
Lhote s]

Polyregular functions - Logical characterisation

Polyregular functions the functions definable via string-to-string
MSO interpretations

BBojarazyk, K .,
Lhote 19]

Polyregular functions - Logical characterisation

Polyregular functions the functions definable via string-to-string
MSO interpretations

BBojarazyk, K .,
Lhote 19]

consider the inner squarng function

innsq: Wo . --#Wn ↳
w

!

#
...

we all wi E{a ,33
*

aba #baa#bb Habaabatbaubaabbbb

Polyregular functions - Logical characterisation

Polyregular functions the functions definable via string-to-string
MSO interpretations

BBojarazyk, K .,
Lhote 19]

consider the inner squarng function

innsq: Wo . --#Wn ↳
w

!

#
...

we all wi E{a ,33
*

aba #baa#bb Habaabatbaubaabbbb

↑a b a#baa#bb

baa bbE⑲ aba baa b b

#

Polyregular functions - Logical characterisation

Polyregular functions the functions definable via string-to-string
MSO interpretations

BBojarazyk, K .,
Lhote 19]

consider the inner squarng function

innsq: Wo . --#Wn ↳
w

!

#
...

we all wi E{a ,33
*

aba #baa#bb Habaabatbaubaabbbb

↑a b a#baa#bb

· (demain &I Label formulas

We define the corresponding MSO interpretation

-bb
Ya(,j) = #(i) na(j)

Y#(ii)) = max(i) 1 #(j)
(i,j) = #(i) 1 b(j)

⑲ ab
#

Polyregular functions - Logical characterisation

Polyregular functions = the functions definable via string-to-string
MSO interpretations

BBojarazyk, K .,
Lhote 19]

consider the inner squarng function

innsq: Wo . --#Wn # w# ...
we all wi E{a ,33

*

aba #baa#bb Habaabatbaubaabbbb

↑a b a#baa#bbWe define the corresponding MSO interpretation

baa bb

· (demain &I Label formulas FYa(,j) = #(i) na(j) a
(,j = #(i)1b(

#lij = max(i) 1#()

aba baa b b

· Geliji'ij) = (A(je (jzj) I ⑲
#-

V 7s , s:/)s jasj)
1 #neither between sij nor between sij
1 neither s ner

s'

has a direct predecessar a ar b

1 lexicographically (s ,ij) /s', ij")

Polyregular functions - Logical characterisation

Polyregular functions the functions definable via string-to-string
MSO interpretations

The proof employs the definition of polyregular functions via for-programs

Polyregular functions - Logical characterisation

Polyregular functions the functions definable via string-to-string
MSO interpretations

The proof employs the definition of polyregular functions via for-programs

Then, for 1
: order formula = reachability between program states

Polyregular functions - Logical characterisation

Polyregular functions = the functions definable via string-to-string
MSO interpretations

The proof employs the definition of polyregular functions via for-programs

Then, for 1
: order formula = reachability between program states

So it remains to prave:

Functions computable by
Functions defnable via

I

for-programs string-to-string interpretations

That is: every MSo-definable total erder implicity respects stack discipline .

Polyregular functions - Logical characterisation

Polyregular functions the functions definable via string-to-string
MSO interpretations

The proof employs the definition of polyregular functions via for-programs

Then, for 1
: order formula = reachability between program states

So it remains to prave:

Functions computable by
Functions defnable via

I

for-programs string-to-string interpretations

That is: every MSo-definable total erder implicity respects stack discipline .

To show this "demination of variables", we use:

· simen's factorisation forest theorem Hinduction)

every string can be cut into pieces that ar similar

↑> "blocks"

Polyregular functions - Logical characterisation

Polyregular functions the functions definable via string-to-string
MSO interpretations

The proof employs the definition of polyregular functions via for-programs

Then, for 1
: order formula = reachability between program states

So it remains to prave:

Functions computable by
Functions defnable via

I

for-programs string-to-string interpretations

That is: every MSo-definable total erder implicity respects stack discipline .

To show this "demination of variables", we use:

· simen's factorisation forest theorem Hinduction)

every string can be cut into pieces that ar similar

↑> "blocks"
· our Domination Lomma

tuples from distind blocks obey stack discipline

Domination on ration als

Domination on ration als

The damination Lemma is very technical,
but it essentially says that

every Fr-definable linear order an position tuples abeys an implicit
stack discipline.

Domination on ration als

The damination Lemma is very technical,
but it essentially says that

every Fr-definable linear order an position tuples abeys an implicit
stack discipline.

That is, for every "type" of position tuples, there
is

always a dominating
coordinate, which determines the relation

Domination on ration als

The damination Lemma is very technical,
but it essentially says that

every Fr-definable linear order an position tuples abeys an implicit
stack discipline.

That is, for every "type" of position tuples, there
is

always a dominating
coordinate, which determines the relation

Consider the following toy result on a single type of tuples

Every quantifier-free total order an

{) Xe, --,Xx) : x. ... X are rationals)
is lexicographic

Domination on ration als

The damination Lemma is very technical,
but it essentially says that

every Fr-definable linear order an position tuples abeys an implicit
stack discipline.

That is, for every "type" of position tuples, there
is

always a dominating
coordinate, which determines the relation

Consider the following toy result on a single type of tuples

Every quantifier-free total order an

{) Xe, --,Xx) : x. ... X are rationals)
is lexicographic

k = 1

: y(x, y) = xxyay(x,) = yex

Domination on ration als

The damination Lemma is very technical,
but it essentially says that

every Fr-definable linear order an position tuples abeys an implicit
stack discipline.

That is, for every "type" of position tuples, there
is

always a dominating
coordinate, which determines the relation

Consider the following toy result on a single type of tuples

Every quantifier-free total order an

{) Xe, --,Xx) : x. ... X are rationals)
is lexicographic

k = 1

: y(x, y) = xxyay(x,) = yex

k =

2

: Case analysis of possible relations between pairs

Domination on ration als

The damination Lemma is very technical,
but it essentially says that

every Fr-definable linear order an position tuples abeys an implicit
stack discipline.

That is, for every "type" of position tuples, there
is

always a dominating
coordinate, which determines the relation

Consider the following toy result on a single type of tuples

Every quantifier-free total order an

{) Xe, --,Xx) : x. ... X are rationals)
is lexicographic

k = 1

: y(x, y) = xxyay(x,) = yex

k =

2

: Case analysis of possible relations between pairs

kx2: Reduction to k =2

Domination an rationals: > 2

Every quantifier-free total order an

{) Xe, --,Xx) : x. ... X are rationals)
is lexicographic

Domination an rationals: > 2

Every quantifier-free total order an

{) Xe, --,Xx) : x. ... X are rationals)
is lexicographic

To show damination for >2, we use the case k = 2
.

Thus, for every
pac of coordinates, there

is

a dominating one .

Domination an rationals: > 2

Every quantifier-free total order an

{) Xe, --,Xx) : x. ... X are rationals)
is lexicographic

To show damination for >2, we use the case k = 2
.

Thus, for every
pac of coordinates, there

is

a dominating one .

Ther it suffices to show that domination is transitive, i . e.

i -j 1j - d = i - d

Domination an rationals: > 2

Every quantifier-free total order an

{) Xe, --,Xx) : x. ... X are rationals)
is lexicographic

To show damination for >2, we use the case k = 2
.

Thus, for every
pac of coordinates, there

is

a dominating one .

Ther it suffices to show that domination is transitive, i . e.

i -j 1j - d = i - d

Domination an rationals: > 2

Every quantifier-free total order an

{) Xe, --,Xx) : x. ... X are rationals)
is lexicographic

To show damination for >2, we use the case k = 2
.

Thus, for every
pac of coordinates, there

is

a dominating one .

Ther it suffices to show that domination is transitive, i . e.

i -j 1j - d = i - d

~ One coordinate daminates globally?

Polyregular Junctions: Growth

· output positions are -tuples of input positions > f(w) >OlIW1")

Infinite state) polynomial"growth rate"

&

Polyregular Junctions: Growth

· output positions are -tuples of input positions > f(w) >OlIW1")

Infinite state) polynomial"growth rate"

What about the converse?

Polyregular Junctions: Growth

· output positions are -tuples of input positions > f(w) >OlIW1")
17Infinite state)

polynomial growth rate"

What about the converse?

Polyregular functions = the functions definable via string-to-string
MSO interpretations

·

Does the growth-rate exparent coincide with the dimension
?

Polyregular Junctions: Growth

· output positions are -tuples of input positions > f(w) >OlIW1")

Infinite state) polynomial"growth rate"

What about the converse?

Polyregular functions = the functions definable via string-to-string
MSO interpretations

·

Does the growth-rate exparent coincide with the dimension
?

TES!
* polyregular function has output size O(n)

.

=>C

The function con be defined via a k-dimensional MSO interpretation .

(Bojarczyk (23)

Polyregular Junctions: Growth

· output positions are -tuples of input positions > f(w) >OlIW1")
17Infinite state)

polynomial growth rate"

What about the converse?

Polyregular functions = the functions definable via string-to-string
MSO interpretations

·

Does the growth-rate exparent coincide with the dimension
?

TES!
* polyregular function has output size O(n)

.

=>C

The function con be defined via a k-dimensional MSO interpretation .

(Bojarczyk (23)

Does the number of needed pebbles also match ther
?

Polyregular Junctions: Growth

· output positions are -tuples of input positions > f(w) >OlIW1")

Infinite state) polynomial"growth rate"

What about the converse?

Polyregular functions = the functions definable via string-to-string
MSO interpretations

·

Does the growth-rate exparent coincide with the dimension
?

TES!
* polyregular function has output size O(n)

.

=>C

The function con be defined via a k-dimensional MSO interpretation .

(Bojarczyk (23)

Does the number of needed pebbles also match ther
?

Clearly, it holds that : pebbles > O(n4) growth

Polyregular functions: Logical characterisation

Polyregular functions the functions definable via string-to-string
MSO interpretations

B[ojarczyk, K .,
Lhote '19]

consider the inner squarng function

innsq: Wo . --#Wn ↳
w

!

#
...

we all wi E{a ,33
*

aba #baa#bb Habaabatbaubaabbbb

Polyregular functions: Logical characterisation

Polyregular functions = the functions definable via string-to-string
MSO interpretations

[Bojarazyk, K .,
Lhote '19]

consider the inner squarng function

innsq: Wo . --#Wn ↳
w

!

#
...

we all wi E{a ,33
*

aba #baa#bb Habaabatbaubaabbbb

↑a b a#baa#bbWe define the corresponding MSO transduction

· (demain &I Label formulas

Ya(,j) = #(i) na(j) b

baa bb

(,j = #(i)1b(
#lij = max(i) 1#()

A

- -" I

&

a
· 4(g, ij) = (H(j - (jE) ⑲

V 7s , s:/)s jasj)
#

1 #neither between sij nor between sij
1 neither s ner

s'

has a direct predecessar a ar b

1 lexicographically (s ,ij) /s', ij")

Polyregular functions: Logical characterisation

Polyregular functions = the functions definable via string-to-string
MSO interpretations

[Bojarazyk, K .,
Lhote '19]

consider the inner squarng function

innsq: Wo . --#Wn ↳
w

!

#
...

we all wi E{a ,33
*

aba #baa#bb Habaabatbaubaabbbb

↑a b a#baa#bb

fasa soa bb

⑲Zab
#

Polyregular functions: Logical characterisation

Polyregular functions = the functions definable via string-to-string
MSO interpretations

[Bojarazyk, K .,
Lhote '19]

consider the inner squarng function

innsq: Wo . --#Wn ↳
w

!

#
...

we all wi E{a ,33
*

aba #baa#bb Habaabatbaubaabbbb

It locks like we need 3 pebbles: ↑a b a#baa#bb

bb:⑲ aba baa b b

#

Polyregular functions: Logical characterisation

Polyregular functions = the functions definable via string-to-string
MSO interpretations

B[ojarczyk, K .,
Lhote '19]

consider the inner squarng function

innsq: Wo . --#Wn ↳
w

!

#
...

we all wi E{a ,33
*

aba #baa#bb Habaabatbaubaabbbb

It locks like we need 3 pebbles: ↑a b a#baa#bb

1) one to mark the beginning of the

currently copied subward wi bb

2) one to count the copies that are output -
3) one to actually copy the current susword wi ⑲

#

Polyregular functions: Logical characterisation

Polyregular functions = the functions definable via string-to-string
MSO interpretations

[Bojarazyk, K .,
Lhote '19]

consider the inner squarng function

innsai Wo# . --#Wp ↳
w

!

#
...

we all wi E{a ,33
*

aba #baa#bb Habaabatbaubaabbbb

It locks like we need 3 pebbles: ↑a b a#baa#bb

currently copied subward wi baa bb

1) one to mark the beginning of the -2) one to count the copies that are output

3) one to actually copy the current susword wi ⑲ ab
#

Does growth-rate exparent h imply that k pebbles suffice?

Polyregular functions: Growth

· output positions are -tuples of input positions > f(w) >OlIW1")
17Infinite state)

polynomial growth rate"

What about the converse?

Does growth-rate exparent h imply that k pebbles suffice?

&

Polyregular functions: Growth

· output positions are -tuples of input positions > f(w) >OlIW1")
17Infinite state)

polynomial growth rate"

What about the converse?

Does growth-rate exparent h imply that k pebbles suffice?

No
!

No constant number of pesbles suffices to compute all
& I

polyregular functions with growth rate exponent k =

2+

(Bojarczyk (23)
* to main result in LCS 2020 paper

Polyregular functions: Growth

· output positions are -tuples of input positions > f(w) >OlIW1")

Infinite state) polynomial"growth rate"

What about the converse?

Does growth-rate exparent h imply that k pebbles suffice?

No
!

No constant number of pebbles suffices to compute all
& I

polyregular functions with growth rate exponent k =

2.

·arczyk /23](Boj
* to main result in LCS 2020 paper

For example, innsq Pebble z
-

innsq: Wo . --#Wn ↳
w

!

#
...

we
all wi E{a ,33

*

Polyregular functions: Growth

· output positions are -tuples of input positions > f(w) >OlIW1")

Infinite state) polynomial"growth rate"

What about the converse?

Does growth-rate exparent h imply that k pebbles suffice?

No
!

No constant number of pebbles sufices to compute all
& I

polyregular functions with growth rate exponent k =

2.

·arczyk /23](Boj
* to main result in LCS 2020 paper

For example, innsq Pebble z
-

innsai Wo . --#Wn
w

!#
...
#we

all wi E{a ,33
*

Our contribution: Easier proofs for the above [k ., Nguyer, Pradic 23]

This talk: Easier proof for innsaePebblea

Inner squaring cannot be done with 2 pebbles

innsq: (a , b, #)
*

- {a ,b, #3
*

Wo# ... #Wn is wo#... *Wn" (all wieha ,b)*)

Inner squaring cannot be done with 2 pebbles

innsq: (a , b, #)
*

- {a ,b, #3
*

Wo# ... #Wn is wo#... *Wn" (all wieha ,b)*)

It suffices to show:

No function
in

Pebblez concides with insq a (ab#)*#*

Assume that there is such a function

Inner squaring cannot be done with 2 pebbles

innsq: (a , b, #)
*

- {a ,b, #3
*

Wo# ... #Wn is wo#... *Wn" (all wieha ,b)*)

It suffices to show:

No function
in

Pebblez concides with insq a (ab#)*#*

Assume that there is such a function

1) using the arguments from the next slide

Then there must be (Ib{a, b)*b that

Inner squaring cannot be done with 2 pebbles

innsq: (a , b, #)
*

- {a ,b, #3
*

Wo# ... #Wn is wo#... *Wn" (all wieha ,b)*)

It suffices to show:

No function
in

Pebblez concides with insq a (ab#)*#*

Assume that there is such a function

1) using the arguments from the next slide

Then there must be (Ib{a, b)*b that

·

is

the output of some way tranducer (i.
e. the image of a regular function)

Inner squaring cannot be done with 2 pebbles

innsq: (a , b, #)
*

- {a ,b, #3
*

Wo# ... #Wn is wo#... *Wn" (all wieha ,b)*)

It suffices to show:

No function
in

Pebblez concides with insq a (ab#)*#*

Assume that there is such a function

1) using the arguments from the next slide

Then there must be (Ib{a, b)*b that

·

is

the output of some way tranducer (i.
e. the image of a regular function)

· consists of infixes of elements
in

innsq((a*#)*#
*

)

Inner squaring cannot be done with 2 pebbles

innsq: (a , b, #)
*

- {a ,b, #3
*

Wo# ... #Wn is wo#... *Wn" (all wieha ,b)*)

It suffices to show:

No function
in

Pebblez concides with insq a (ab#)*#*

Assume that there is such a function

1) using the arguments from the next slide

Then there must be (Ib{a, b)*b that

·

is

the output of some way tranducer (i.
e. the image of a regular function)

· consists of infixes of elements
in

innsq((a*#)*#
*

)

· contains for every NEIN a
word ba

...

ab ... b with at hast N b's
-
alle-blocks have length n3 N

Inner squaring cannot be done with 2 pebbles

innsq: (a , b, #)
*

- {a ,b, #3
*

Wo# ... #Wn is wo#... *Wn" (all wieha ,b)*)

It suffices to show:

No function
in

Pebblez concides with insq a (ab#)*#*

Assume that there is such a function

1) using the arguments from the next slide

Then there must be (Ib{a, b)*b that

·

is

the output of some way tranducer (i.
e. the image of a regular function)

· consists of infixes of elements
in

innsq((a*#)*#
*

)

· contains for every NEIN a
word ba

...

ab
... ba

...

ab with at hast N b's
- -
alle-blocks have length n3 N

We apply a pumping argament to to conclude that it cannot exist .

Inner squaring cannot be done with 2 pebbles

Assume there is fe Pebblez that coinciders with innsq an (ab#) " #*

Inner squaring cannot be done with 2 pebbles

Assume there is fe Pebblez that coinciders with innsq an (ab#) " #*

s I can be obtained
by adequately nesting regular functions

h

⑤
C

a
b

.
W

f(w) &

Inner squaring cannot be done with 2 pebbles

Assume there is fe Pebblez that coinciders with innsq an (ab#) " #*

s I can be obtained
by adequately nesting regular functions

h

⑤ Those having linear growth, the "inner functions" can
C

a only produce linearly lang infixes
b

. Consider (a"3#)"m, insa, Karmantel m
.

W
f(w)

Inner squaring cannot be done with 2 pebbles

Assume there is fe Pebblez that coinciders with innsq an (ab#) " #*

↳

- I can be obtained
by adequately nesting regular functions

h

⑤ Those having linear growth, the "inner functions" can
C

d
C only produce linearly lang infixes
b

& a- Consider (a"3#)"m, insa, Karmantel m
.f(w)

=> subcomputations produce 1#ead.

But there must be are that produces >Nb's on one side of the #

We obtain a
... ablab)"a ... a. (for soma n,

r ,N)
-

Inner squaring cannot be done with 2 pebbles

Assume there is fe Pebblez that coinciders with innsq an (ab#) " #*

↳

- I can be obtained
by adequately nesting regular functions

h

⑤ Those having linear growth, the "inner functions" can
C

d
C only produce linearly lang infixes
b

A

n.m&
W
- Consider (a"3#)"# insa, Karmantel m

.f(w)

=> subcomputations produce 1#ead.

But there must be are that produces >Nb's on one side of the #

We obtain a
... ablab)"a ... a. (for soma n,

r ,N)
-

This way, we construct (b{a ,b)*b that
·

is

the image of a regular function

· consists of infixes of elements
in

innsq((a*#)*#
*

)

· contains for every NEIN a ba
...

ab ... ba
...

ab with at hast N b's
- -
alle-blocks have length n3 N

Inner squaring cannot be done with 2 pebbles

L bEa, b)*b is a regular image that

· consists of
in

of elements
in

innsq((a*#)*#
*

)fixes
· contains for every NEIN a

word ba
...

ab
... ba

...

ab with at hast N b's
- -
alle-blocks have length n3 N

↑

Inner squaring cannot be done with 2 pebbles

L bEa, b)*b is a regular image that

· consists of infixes of elements
in

innsq((a*#)*#
*

)

· contains for every NEIN a
word ba

...

ab
... ba

...

ab with at hast N b's
- -
alle-blocks have length n3 N

There are K, KEN such that every wel with Iwl>1 has a

decomposition = Korun Un with ·vie for some
i =(1, --, k]

[ROZOY'86] PUMPING LEMMA
· IvileK for all

:

(1, ..., k}
· Euov, ...Un-umIneN) L

N

Inner squaring cannot be done with 2 pebbles

L bEa, b)*b is a regular image that

· consists of infixes of elements
in

innsq((a*#)*#
*

)

· contains for every NEIN a
word ba

...

ab
...
ba
....

ab with at hast N b's
- -
alle-blocks have length n3 N

There are K, KEN such that every wel with Iwl>1 has a

decomposition = Korun Un with ·vie for some
i =(1, --, k]

[ROZOY'86] PUMPING LEMMA
· IvileK for all

:

(1, ..., k}
· Euov, ...Un-umIneN) L

For Ni
= maxEK

,
2k+2), we obtain a blaub)" ch with >NIK, r>N>2k+1.

Hence, blaub)" Kovu .. -Vallm andE... Up Um Ehr
=:z

-
-

Inner squaring cannot be done with 2 pebbles

L bEa, b)*b is a regular image that

· consists of infixes of elements
in

innsq((a*#)*#
*

)

· contains for every NEIN a
word ba

...

ab
...
ba
....

ab with at hast N b's
- -
alle-blocks have length n3 N

There are K, KEN such that every wel with Iwl>1 has a

decomposition = Korun Un with ·vie for some
i =(1, --, k]

[ROZOY'86] PUMPING LEMMA
· IvileK for all

:

(1, ..., k}
· Euov, ...Un-umIneN) L

For Ni
= maxEK

,
2k+2), we obtain a blaub)" ch with >NIK, r>N>2k+1.

Hence, blaub)" Kovu .. -Vallm and von ... Um e
-

=:z

Each vi contains at most
one b.

> There
is

a 4

,
which contains two b's

Thus, ba"b is an infix of
z

.

=> All a-blocks in

z have fixed length n.

Inner squaring cannot be done with 2 pebbles

L bEa, b)*b is a regular image that

· consists of infixes of elements
in

innsq((a*#)*#
*

)

· contains for every NEIN a
word ba

...

ab
...
ba
....

ab with at hast N b's
- -
alle-blocks have length n3 N

There are K, KEN such that every wel with Iwl>1 has a

decomposition = Korun Un with ·vie for some
i =(1, --, k]

[ROZOY'86] PUMPING LEMMA
· IvileK for all

:

(1, ..., k}
· Euov, ...Un-umIneN) L

For Ni
= maxEK

,
2k+2), we obtain a blaub)" ch with >NIK, r>N>2k+1.

Hence, blaub)" Kovu .. -Vallm and von ... Um e
-

=:z

Each vi contains at most
one b.

> There
is

a 4

,
which contains two b's

Thus, ba"b is an infix of
z

.

=> All a-blocks in

z have fixed length n.

N Case
1

: Some
v
, contains a b.

Inner squaring cannot be done with 2 pebbles

L bEa, b)*b is a regular image that

· consists of infixes of elements
in

innsq((a*#)*#
*

)

· contains for every NEIN a
word ba

...

ab
...
ba
....

ab with at hast N b's
- -
alle-blocks have length n3 N

There are K, KEN such that every wel with Iwl>1 has a

decomposition = Korun Un with ·vie for some
i =(1, --, k]

[ROZOY'86] PUMPING LEMMA
· IvileK for all

:

(1, ..., k}
· Euov, ...Un-umIneN) L

For Ni
= maxEK

,
2k+2), we obtain a blaub)" ch with >NIK, r>N>2k+1.

Hence, blaub)" Kovu .. -Vallm and von ... Um e
-

=:z

Each vi contains at most
one b.

> There
is

a 4

,
which contains two b's

Thus, ba"b is an infix of
z

.

=> All a-blocks in

z have fixed length n.

N Case
1

: Some
v
, contains a b. Case 2

: All vi
are

in

a*. d

Conclusion

Polyregular functions are s-to-s functions with polynomial-size autput .

Conclusion

Polyregular functions are s-to-s functions with polynomial-size autput.

They have various equivalent characterisations, e . g.

& is polyregular : c ->
I

is

computed by a-

for-program
~

↑
,

-↓ E # [Bojaiczyk, R .,
Lhote 19]

I
is

recognised by a 8
is

defined by a
-

s-to-spebble transducer s-to-s MSO interpretation

Conclusion

Polyregular functions are s-to-s functions with polynomial-size autput.

They have various equivalent characterisations, e . g.

& is polyregular : c ->
I

is

computed by a-

for-program
~

↑
,

-↓ E # [Bojaiczyk, R .,
Lhote 19]

I
is

recognised by a 8
is

defined by a
-=

s-to-spebble transducer s-to-s MSO interpretation

Follow-up wor and concepts:

· Polyblind functions - compaisons between pebble positions are
~

not allowed N[guyen, Nos, Pradic (21)
-

-> a setting where growth O(n) pebbles"

[see also Dovéneau-Tabet (23]

Conclusion

Polyregular functions are s-to-s functions with polynomial-size autput.

They have various equivalent characterisations, e . g.

& is polyregular : c ->
I

is

computed by a-

for-program
~

↑
,

-↓ E # [Bojaiczyk, R .,
Lhote 19]

I
is

recognised by a 8
is

defined by a
-=

s-to-spebble transducer s-to-s MSO interpretation

Follow-up wor and concepts:

· Polyblind functions - compaisons between pebble positions re

not allowed N[guyen, Nos, Pradic (21)
-

-> a setting where growth O(n) pebbles"

[see also Dovéneau-Tabet (23]

· -polyregular functions - functions sumof, where f

:

E* -EF13" is

polyregular Kolcombet,Dovéneau-Tabot, Lopez '23]

Conclusion

& is polyregular of => I
is

defined by a -din
.

growth rate O(n) s-to-s MSO interpretation
7/

- /Ei in

I
is

recognised by a k-pebble

s-to-spebble transducer -

Conclusion

& is polyregular of = 8
is

defined by a -dim
.

growth rate O(n) s-to-s MSO interpretation

Ki ↑- in
--
!

I
is

recognised by a k-pebble

s-to-spebble transducer -

innsq: (a , b, #)
*

- {a ,b, #3
*

Wo# ... #Wn is wo#... *Wn" (all wieha ,b)*)

For example, innsa requires 3 pebbles, but innsq(w) EO(lw1).

Conclusion

& is polyregular of => I
is

defined by a -din
.

growth rate O(n) s-to-s MSO interpretation
7/

- /Ei in

I
is

recognised by a k-pebble

s-to-spebble transducer -

innsq: (a , b, #)
*

- {a ,b, #3
*

Wo# ... #Wn is wo#... *Wn" (all wieha ,b)*)

For example, innsa requires 3 pebbles, but innsq(w) EO(lw1).

There are also quadratic-growth polyregular functions (fulkein where

frPebblek for each KEIN . [see Bojarczyl 23]

Conclusion

& is polyregular of = 8
is

defined by a -dim
.

growth rate O(n) s-to-s MSO interpretation
7/

- /Ei in

I
is

recognised by a k-pebble

s-to-spebble transducer -

innsq: (a , b, #)
*

- {a ,b, #3
*

Wo# ... #Wn is wo#... *Wn" (all wieha ,b)*)

For example, innsa requires 3 pebbles
,
but innsq(w) EO(lw1).

There are also quadratic-growth polyregular functions (fulkein where

frPebblek for each KEIN . [see Bojarczyl 23]

In [K ., Nguyen, Pradic 23], we show that a slightly stranger result actually

follows quickly gran old results due to (Engelfiet, Maneth "01]
.

