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Labeled Markov Decision Processes

Map-marker-alt

Battery-three-quarters

I Actions A = {ARROW-UP,ARROW-DOWN,ARROW-LEFT,ARROW-RIGHT}
I Labels P = {Map-marker-alt,Battery-three-quarters}

M = (S, sI , A,P, p, L, R, γ)

set S of statesinitial state sI ∈ Sactions A and labels P
transition function

p : S × A × S → [0, 1]
labeling function

L : S × A × S → P
reward function

R : S × A × S → R s s ′ARROW-RIGHT; 0.5

;Map-marker-alt; 1

discount factor γ ∈ (0, 1)
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A Very, Very Brief Introduction to Q-Learning

Find a (probabilistic) policy π : S × A→ [0, 1] maximizing the expected discounted reward

Eπ

[ k∑
i=0

γ i · R(si , ai+1, si+1)
]

of every trajectory s0a0s1 . . . sk+1, k ∈ N, through the MDP

Q-Learning
1. Maintain a table Q : S × A→ R (initialized to, e.g., 0)
2. Explore the environment according to π, resulting in a trajectory s0a1s1a2s2 . . .

3. In step t, update Q by
Q(st , at)← (1− α) · Q(st , at) + α

[
R(st , at+1, st+1) + γ maxa Q(st+1, a)

]
4. After each episode, update π by π(s, a)← arg maxa∈AQ(s, a)
5. Repeat until this process converges; π is then the optimal policy
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Non-Markovian Rewards

A B

C

B

A D

A; B; C; D: 1

A; B; B; C; D: 1

A; D: -1

A; C; D: -1

How to handle such situations?
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1. Joint Inference of Policies
and Reward Machines
(joint work with Yousef Ahmad, Ivan Gavran, Rupak Majumdar,
Ufuk Topcu, Bo Wu, and Zhe Xu)



Reward Machines
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“Use automata/temporal logic to
capture non-Markovian rewards”
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QRM: Q-Learning with Reward Machines

Icarte et al. (2018) have proposed an extension of the
Q-learning algorithm, named QRM, that can handle
reward machines
I avoids building the cross-product explicitly
I exploits the structure of the reward machine

during exploration

Problem
How does one construct reward machines?
I direct construction, from temporal logics, learning,

. . .

Using Reward Machines for High-Level Task Specification
and Decomposition in Reinforcement Learning

Rodrigo Toro Icarte 1 2 Toryn Q. Klassen 1 Richard Valenzano 3 Sheila A. McIlraith 1 2

Abstract
In this paper we propose Reward Machines – a
type of finite state machine that supports the spec-
ification of reward functions while exposing re-
ward function structure to the learner and support-
ing decomposition. We then present Q-Learning
for Reward Machines (QRM), an algorithm which
appropriately decomposes the reward machine
and uses off-policy q-learning to simultaneously
learn subpolicies for the different components.
QRM is guaranteed to converge to an optimal pol-
icy in the tabular case, in contrast to Hierarchical
Reinforcement Learning methods which might
converge to suboptimal policies. We demonstrate
this behavior experimentally in two discrete do-
mains. We also show how function approximation
methods like neural networks can be incorporated
into QRM, and that doing so can find better poli-
cies more quickly than hierarchical methods in a
domain with a continuous state space.

1. Introduction
A standard assumption in reinforcement learning (RL) is
that the agent does not have access to the environment model
(Sutton & Barto, 1998). This means that it does not know, a
priori, the transition probabilities or reward function mani-
fest in the environment. To learn optimal behavior, an RL
agent must therefore interact with the environment and learn
from its experience. While assuming that the transition prob-
abilities are unknown seems reasonable, there is less reason
to hide the reward function from the agent. Artificial agents
cannot inherently perceive reward from the environment;
someone must program those rewards functions (even if the
agent is interacting with the real world). Typically, though,

1Department of Computer Science, University of Toronto,
Toronto, Ontario, Canada 2Vector Institute, Toronto, Ontario,
Canada 3Element AI, Toronto, Ontario, Canada. Correspondence
to: Rodrigo Toro Icarte <rntoro@cs.toronto.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

a programmed reward function is given as a black box to the
agent. The agent can query the function for the reward in
the current situation, but does not have access to whatever
structures or high-level ideas the programmer may have
used in defining it. However, an agent that had access to
the specification of the reward function might be able to use
it to decompose the problem and speed up learning. We
consider a way to do so in this paper.

Previous work on giving an agent knowledge about the
reward function focus on defining a task specification
language, usually based on sub-goal sequences (Singh,
1992a;b) or linear temporal logic (Li et al., 2017; Cama-
cho et al., 2017; Littman et al., 2017; Toro Icarte et al.,
2018; Hasanbeig et al., 2018), and then generate a reward
function towards fulfilling that specification. In this work,
we instead directly tackle the problem of defining reward
functions that expose structure to the agent. As such, our
approach is able to reward behaviors to varying degrees in
manners that cannot be expressed by previous approaches.

There are two main contributions of this work. First, we in-
troduce a type of finite state machine, called the Reward Ma-
chine, which we use in defining rewards. A reward machine
allows for composing different reward functions in flexi-
ble ways, including concatenations, loops, and conditional
rules. As an agent acts in the environment, moving from
state to state, it also moves from state to state within a re-
ward machine (as determined by high-level events detected
within the environment). After every transition, the reward
machine outputs the reward function the agent should use
at that time. For example, we might construct a reward
machine for “delivering coffee to an office” using two states.
In the first state, the agent does not receive any rewards, but
it moves to the second state whenever it gets the coffee. In
the second state, the agent gets rewards after delivering the
coffee. The advantage of defining rewards this way is that
the agent knows that the problem consists of two stages and
might use this information for decomposing it.

Our second contribution is to introduce an algorithm, called
Q-Learning for Reward Machines (QRM), that can exploit a
reward machine’s internal structure to decompose the prob-
lem and thereby improve sample efficiency. QRM’s task
decomposition does not prune optimal policies and uses q-

ICML 2018
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Joint Inference of Policies and Reward Machines

Key idea
I Given the current hypothesis reward

machine H, perform QRM and record
the resulting label sequence λ = `1 . . . `n
and reward sequence ρ = r1 . . . rn

I If the pair (λ, ρ) contradicts H, learn a
new reward machine H ′

I Repeat until this process converges to
the “true” reward machine and an
optimal policy

labeled MDP

sI s1

s2

s3 s4

`1, r1

`2, r2

`3, r3

`4, r4
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The JIRP Algorithm

Initialize reward machine H;

Initialize a set Q of q-functions;

Initialize a sample X of traces;

H: p1 (?, 0)

p1 p2

(¬D, 0)

(D, 1)

(?, 0)

Q:
{
qp1

}{
qp1 , qp2

}

X : ∅
{
(A; B; C ; D/0; 0; 0; 1)

}
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The JIRP Algorithm

Initialize H, Q, X ;

repeat

(λ, ρ, Q)← QRM(H, Q);

if H(λ) 6= ρ then
add (λ, ρ) to X ;

if X was modified then
H ← infer(X );
re-initialize Q if necessary;

It is crucial to
infer minimal

reward machines
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A SAT-Based Inference Algorithm for Reward Machines

n ← 0

n ← n + 1

create propositional
formula ΦX

n

is ΦX
n satisfiable?

derive reward
machine of size
n from model

sample X

no yes

1. ΦX
n is satisfiable iff

there exists a reward
machine of size n that
is consistent with X

2. A model of ΦX
n

contains sufficient
information to
construct a consistent
reward machine of
size n
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Encoding Reward Machines in Propositional Logic

We use two sets of propositional variables to encode reward machines:

dp,`,q encodes the transition function of the reward machine
(i.e., the machine transitions from state p to state q on reading symbol `)

op,`,r encodes the output function of the reward machine
(i.e., the machine outputs reward r in state p on reading symbol `)

Enforcing deterministic functions
We impose pseudo-Boolean constraints to enforce for each pair of state p and input a that
I exactly one variable dp,`,q is set to true
I exactly one variable op,`,r is set to true
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Consistency with Examples

We introduce a set of auxiliary variables:

xλ,p encodes the run of the reward machine on all prefixes of examples
(i.e., the machine reaches state p after reading the prefix λ)

Enforcing consistency with the examples[ ∧
u∈Pref (X)

one(xu,q1 , . . . , xu,qn)
]
∧ xε,qI

(
xλ,p ∧ dp,`,q

)
→ xλ`,q

xλ,p → op,`,r

qI

p q

xε,qI xλ,p xλ`,q

(λ, ρ) (`, r)

reward machine:
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JIRP: Theoretical Result

Theorem (Ahmad, Gavran, Majumdar, N., Topcu, Wu, and Xu)
Given
I a sufficient episode length
I an ε-greedy exploration strategy

we have the following:

1. JIRP almost surely learns the “true” reward machine
2. JIRP almost surely converges to an optimal policy

Daniel Neider: Reinforcement Learning with Reward Machines 13



JIRP: Empirical Results

Office World Scenario (Icarte et al., 2018)

JIRP HRL DDQN

Conclusion
I JIRP is the only method that converges to an optimal policy
I JIRP converges faster than any of the competing methods

Daniel Neider: Reinforcement Learning with Reward Machines 14



2. Reinforcement Learning with
Stochastic Reward Machines
(joint work with Jan Corazza and Ivan Gavran)



An Environment with Stochastic Rewards

M

T

S

G

T: tools Tools M: market Donate

S: silver mine MOUNTAIN G: gold mine MOUNTAIN

T; G; M: 1.9

T; G; M: 2.2

T; S; M: 1.2

T; S; M: 0.9

I If the label sequences are identical, no
reward machine matches both traces

I If the label sequences are different, the
resulting reward machine explodes in
size
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Stochastic Reward Machines (SRM)

T; G; M: 1.9

T; G; M: 2.2

T; S; M: 1.2

T; S; M: 0.9

(¬T , 0)

(T , 0)

(¬(G ∨ S), 0)
(G, 0)

(S, 0)

(¬M, 0)

(M, U(1.9, 2.2))

(¬M, 0)

(M, U(0.9, 1.2))

Outputs are bounded continuous distributions

Daniel Neider: Reinforcement Learning with Reward Machines 16



Equivalence in Expectation

Two SRMs A and B are equivalent in
expectation (A ∼E B) if they output
sequences of distributions with equal
expected values for each label sequence

Corollary
If two SRMs are equivalent in expectation,
then they induce the same optimal policy in
an environment

A:
λ `

B:
λ `

Daniel Neider: Reinforcement Learning with Reward Machines 17
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A Naive Solution

A naive algorithm
1. Collect many samples
2. Take the average reward in every position

of the same trajectory
3. Construct an ordinary reward machine

based on the average rewards

Problem
Collecting samples is too slow!

T; G; M: 1.9

T; G; M: 2.2

T; G; M: 2.1

T; G; M: 2.0

average: 2.05
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One Can Do Better Under Two Assumptions

δ

1. Probability distributions are continuous
and have bounded support with
“width“ δ

> δ

we will eventually observe
enough rewards to differentiate

no differentiation necessary:
equal expectations

2. The noise from one distribution does not
fully conceal the signal from another one
(except in symmetric circumstances)
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SRMI

Initialize H, Q, X , A;

repeat

(λ, ρ, Q)← QRM(H, Q);

add (λ, ρ) to A;

if H is not δ-consistent with (λ, ρ) then
add (λ, ρ) to X ;
H ′ ← infer(X );
H ← estimate(H ′, A);
re-initialize Q if necessary;

one would keep a
moving average in practice
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Initialize H, Q, X , A;

repeat

(λ, ρ, Q)← QRM(H, Q);

add (λ, ρ) to A;

if H is not δ-consistent with (λ, ρ) then
add (λ, ρ) to X ;
H ′ ← infer(X );

H ← estimate(H ′, A);
re-initialize Q if necessary;

infers a minimal
δ-consistent “proto”-SRM

(only cares for δ-consistency,
not estimating distribution)
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SRMI

Initialize H, Q, X , A;

repeat

(λ, ρ, Q)← QRM(H, Q);

add (λ, ρ) to A;

if H is not δ-consistent with (λ, ρ) then
add (λ, ρ) to X ;
H ′ ← infer(X );
H ← estimate(H ′, A);
re-initialize Q if necessary;

corrects outputs of H ′

by estimating distribution
parameters from samples in A

Daniel Neider: Reinforcement Learning with Reward Machines 20



An SMT-Based Inference Algorithm for Stochastic Reward Machines

n ← 0

n ← n + 1

create SMT
formula ΨX

n

is ΨX
n satisfiable? derive “proto”-SRM

of size n from model

sample X

no yes

Daniel Neider: Reinforcement Learning with Reward Machines 21



Encoding Stochastic Reward Machines in SMT

We use propositional and real-valued variables to encode a “proto”-SRM:

dp,`,q ∈ B encodes the transition function of the reward machine

xλ,p ∈ B encodes the run of the reward machine on prefixes from X

op,` ∈ R encodes a “conjectured mean” of an output distribution
(i.e., the distr. returned in state p on reading symbol ` has mean op,`)

Enforcing consistency with the examples

xλ,p → |op,` − r | ≤ δ

2
qI p q

xε,qI xλ,p xλ`,q

(λ, ρ) (`, op,`)
SRM:

Daniel Neider: Reinforcement Learning with Reward Machines 22



SRMI: Theoretical Result

Theorem (Corazza, Gavran, N.)
Given
I a sufficient episode length
I an ε-greedy exploration strategy
I Assumptions 1 and 2 hold for the “true” (environment) SRM

we have the following:

1. SRMI almost surely learns a SRM that is equivalent in expectation to the “true” SRM
2. SRMI almost surely converges to an optimal policy

Daniel Neider: Reinforcement Learning with Reward Machines 23



SRMI: Empirical Results
Mining Environment

stochastic rewards
re

w
ar

d
deterministic rewards

re
w

ar
d

Conclusion
I SRMI converges faster than the baseline method
I SRMI’s performance does not degrade in the case of deterministic rewards
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Probilistic Reward Machines

Inferring Probabilistic Reward Machines from Non-Markovian Reward Signals
for Reinforcement Learning

Taylor Dohmen1*, Noah Topper2*, George Atia2, Andre Beckus3,
Ashutosh Trivedi1, Alvaro Velasquez3

1 University of Colorado Boulder
2 University of Central Florida

3 Air Force Research Laboratory

Abstract

The success of reinforcement learning in typical settings is
predicated on Markovian assumptions on the reward signal
b hi h t l ti l li i I t

2021). They also serve as a memory mechanism for rea-
soning over partially observable environments (Icarte et al.
2019), are useful for reward shaping to mitigate sparse re-
ward signals (Camacho et al. 2019; Velasquez and Melcer

Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)
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3. Advice-Guided Reinforcement Learning
(joint work with Jean-Raphaël Gaglione, Ivan Gavran, Ufuk Topcu,
Bo Wu, and Zhe Xu)



Advice-Guided Reinforcement Learning

reward
machine
is given

reward
machine

is inferred

Icarte et al., 2018 Icarte et a., 2019
Furelos-Blanco et al., 2020
Gaon & Brafman, 2020
Xu et al., 2020
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reward
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machine
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Furelos-Blanco et al., 2020
Gaon & Brafman, 2020
Xu et al., 2020

Daniel Neider: Reinforcement Learning with Reward Machines 26



Advice DFAs

We formalize advice by means of regular languages:

I Deterministic Finite Automata (DFA)
I Regular expressions
I Linear Temporal Logic
I . . .

Compatibility of advice DFAs (i.e., semantics)
A reward can only be positive (negative/non-zero)
if the advice DFA accepts the label sequence
I A reward machine satisfying this property

is called compatible

“every A is
followed by B”

¬A

A

A

B

¬B ∧ ¬A

?
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AdvisoRL

Initialize reward machine H;

Initialize a set Q of q-functions;

Initialize a sample X of traces;

Initialize a set D of advice DFAs;

H: p1 (?, 0)

p1 p2 p3

(¬A, 0)

(A, 0) (B, 0)

(¬D, 0)

(D, 1)

Q:
{
qp1

}{
qp1 , qp2 , qp3

}

X : ∅
{
(A; B; C ; D/0; 0; 0; 1)

}

D:
{ ¬A

A
A

B

;

¬B

B
B

D

}
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A SAT-Based Inference Algorithm for Reward Machines

n ← 0

n ← n + 1

create propositional
formula ΦX ,D

n

is ΦX ,D
n satisfiable?

derive reward
machine of size
n from model

sample X
advice DFAs D

no yes
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AdvisoRL: Theoretical Result

Theorem (N., Gaglione, Gavran, Topcu, Wu, Xu)
Given
I a sufficient episode length
I an ε-greedy exploration strategy

we have the following:

1. AdvisoRL almost surely learns the “true” reward machine
2. AdvisoRL almost surely converges to an optimal policy
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AdvisoRL: Empirical Results

Conclusion
I AdvisoRL’s performance

improves with the “quality” of
the given advice

I AdvisoRL is robust to incorrect
advice

Office World Scenario (Icarte et al., 2018)
AdvisoRL
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Conclusion
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Grid World Example

b I G¬e1

c I X X X X X k2

k2 I G¬e2
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Conclusion

Summary
I We have been on a journey through reinforcement learning with reward machines
I There are several extension (often by other research groups)

I partial observability, active automata learning, etc.

Future work
I Incorporating (temporal) causal information
I Automatically synthesizing high level propositions
I More expressive classes of finite-state machines (e.g., counter)
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Newly Established Research Center at UA Ruhr

I Three universities: University of Duisburg-Essen, University of Bochum,
TU Dortmund University

I Four disciplines: Computer science, IT Security, Statistics, Psychology

We offer opportunities . . .
I Collaborations with academia and industry
I Open positions for research group leaders, postdocs, Ph.D.s, students
I Internship program
I . . .
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