Reinforcement Learning with Reward Machines

Daniel Neider

P> | CENTER FOR TRUSTWORTHY
dOrth.nd - - DATA SCIENCE AND SECURITY
university W et

UA RUHR | RESEARCH ALLIANCE

Theorietag “Automaten und Formale Sprachen”
RPTU/MPI-SWS, Kaiserslautern, Germany
4 QOctober 2023



Reinforcement Learning

agent

state +
reward

environment
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Labeled Markov Decision Processes

™ Q

> Actions A = {M ¥V, €, >}
> Labels P = {Q,E}
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Labeled Markov Decision Processes

i

M = (SaslvAapvpv L: R’,Y)

initial state s, € S
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Labeled Markov Decision Processes

o

M = (Sa SI,A,P,p, L: R’,Y)

actions A and labels P
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Labeled Markov Decision Processes

F
i

M = (Sa SI,A,P,P, L: R’,Y)

transition function =205
p: SxAxS—[0,1]
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Labeled Markov Decision Processes

F
i

M = (Sa SI,A,P,p, L: R’,Y)

labeling function ;05,9
L:SxXAXxS =P
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Labeled Markov Decision Processes

F
i

M = (SaslvAapvpv L: R’,Y)

reward function 2,059Q;1
R:SxAxS — R
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Labeled Markov Decision Processes

o

M = (SaslvAapvpv L: Raﬁ/)

discount factor vy € (0, 1)




A Very, Very Brief Introduction to Q-Learning

Find a (probabilistic) policy 7: S x A — [0, 1] maximizing the expected discounted reward

K
Er [Z v R(sis ai+1, Si+1)
i=0

of every trajectory spapsi . .. Sk+1, kK € N, through the MDP
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A Very, Very Brief Introduction to Q-Learning

Find a (probabilistic) policy 7: S x A — [0, 1] maximizing the expected discounted reward

K
Er [Z v R(sis ai+1, Si+1)
i=0

of every trajectory spapsi . .. Sk+1, kK € N, through the MDP

Q-Learning

1. Maintain a table Q: S x A — R (initialized to, e.g., 0)
2. Explore the environment according to 7, resulting in a trajectory spaisiass,. ..
3. In step t, update Q by
Q(st,ar) « (1 — @) - Q(st, ar) + a[R(st, ar11, Se1) + ¥ max, Q(se+1, a)]
4. After each episode, update 7 by 7(s, a) <— arg max,c4Q(s, a)
5. Repeat until this process converges; 7 is then the optimal policy
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Non-Markovian Rewards

—
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Non-Markovian Rewards

A D A; B; C; D: 1
B A; B; B; C; D: 1
C |A; D: 1]
A B (A C; D 1]
i

How to handle such situations?
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Reinforcement Learning with Reward Machines
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Joint Inference of Reward Machines and Policies for Reinforcement Learning
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Bo Wu'

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAT-22)

Reinforcement Learning with Stochastic Reward Machines
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Jan Corazza'2, Ivan Gavran’, Daniel Neider

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

-SWS.0rg

Advice-Guided Reinforcement Learning in a non-Markovian Environment (—/\"‘\/\'\—w\,—/—-’

Daniel Neider', Jean-Raphael Gaglione?, Ivan Gavran', Ufuk Topcu®, Bo Wu?, Zhe Xu*
! Max Planck Institute for Software Systems, Kaiserslautern, Germany
2 Ecole Polytechnique, France
3 University of Texas at Austin, Texas, USA
4 Arizona State University, Arizona, USA
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Joint Inference of Policies
and Reward Machines

(joint work with Yousef Ahmad, lvan Gavran, Rupak Majumdar,
Ufuk Topcu, Bo Wu, and Zhe Xu)



Reward Machines

A; B; C; D: 1
A; B; B; C; D: 1
A; D: 1
A; C; D 1]

Bacchus et al. (1996)
Jothimurgan et al. (2019) “Use automata/temporal logic to

Icarte et al. (2018) capture non-Markovian rewards”
Brafman et al. (2018)
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Reward Machines

A; B; C; D: 1
A: B; B; C; D: 1
’A D- (A,0) (B,0) (C,0) (*,0)

: o fue Fen B
’A;C;D: %Q

Bacchus et al. (1996)
Jothimurgan et al. (2019)
Icarte et al. (2018)
Brafman et al. (2018)
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Reward Machines
(x,0)
A:; B; C; D: 1

A; B; B; C; D: 1 _
S )
’A; D: _1‘ (8,0) Jd (€0 (%,0)
(8,0) (c,0) (0.1)
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Reward Machines

A; B; C; D: 1
A; B; B; C; D: 1
A; D: 1
A; C; D 1]

Bacchus et al. (1996)
Jothimurgan et al. (2019)

Icarte et al. (2018)
Brafman et al. (2018) (=D.0) (D,-1)
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Reward Machines

A; B; C; D: 1
A: B; B; C; D: 1
’A; D: —1‘ S A D
B
’A; C; D: -1‘ »%ﬁ% 6 >< C
A B
=

Bacchus et al. (1996)
Jothimurgan et al. (2019)
Icarte et al. (2018)
Brafman et al. (2018)
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QRM: Q-Learning with Reward Machines

Icarte et al. (2018) have proposed an extension of the L ok Spetcton
Q-learning algorithm, named QRM, that can handle S—
reward machines

» avoids building the cross-product explicitly

» exploits the structure of the reward machine
during exploration

ICML 2018
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QRM: Q-Learning with Reward Machines

Icarte et al. (2018) have proposed an extension of the L ok Spetcton
Q-learning algorithm, named QRM, that can handle S—
reward machines

» avoids building the cross-product explicitly

» exploits the structure of the reward machine
during exploration

Problem_

How does one construct reward machines?

» direct construction, from temporal logics, learning,

ICML 2018
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Joint Inference of Policies and Reward Machines

» Repeat until this process converges to
the “true” reward machine and an
optimal policy \

Key idea pemmmmmmmmmmmnnn-.labeled MDP
» Given the current hypothesis reward i la,ra i
machine H, perform QRM and record i @—> |

the resulting label sequence A = ¢1...4, i tsrs i

and reward sequence p=1r1... 1, | :

> If the pair (A, p) contradicts H, learn a i i
new reward machine H’ l o1 i

| i
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The JIRP Algorithm

He o =)D w0
Initialize reward machine H;
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The JIRP Algorithm

He o =)D w0
Initialize reward machine H;

Initialize a set @ of g-functions;

Q: {qpl}

Initialize a sample X of traces;

Daniel Neider: Reinforcement Learning with Reward Machines 9




The JIRP Algorithm

Initialize H, Q, X;

repeat
(A p, Q) « QRM(H, Q); H: » (x.0)
Q: {qpl}
X: 1]
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The JIRP Algorithm

Initialize H, Q, X;

(A, . Q) + QRM(H, Q); H: » (%,0)

Q: {qpl}
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The JIRP Algorithm

Initialize H, Q, X;

(A p. Q) « QRM(H, Q); H: » (x.0)
PR (7775

Q: {qpl}
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The JIRP Algorithm

Initialize H, Q, X;

(A p. Q) « QRM(H, Q); H: » (x.0)
~ 0:0:0;1
it H) % » then

add (), p) to X; Q: {7}
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The JIRP Algorithm

Initialize H, Q, X;

(A p. Q) « QRM(H, Q); H: » (x.0)
~ 0:0:0;1
it H) % » then

add (), p) to X; Q: {7}

X: {(A;B; C;D/0;0;0;1)}
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The JIRP Algorithm

Initialize H, Q, X;
repeat

(A p, Q) « QRM(H, Q); > H: » (x.0)

if H(\) # p then
add (), p) to X; Q: {7}

if X was modified then
H « infer(X); ) X:  {(AB;C;D/0;0;0;1)}
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The JIRP Algorithm

Initialize H, Q, X; (=D, 0)

repeat
(D, 1)
(A, p, Q) <= QRM(H, Q); H: %8 @

(,0)
if H(\) # p then
add (A, p) to X; Q  {¢"}
if X was modified then
H + infer(X); ) X:  {(AB;CD/0;0;0;1)}
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The JIRP Algorithm

Initialize H, Q, X;

(ﬁDv 0)
repeat 0.1)
(A, p, Q) < QRM(H, Q); H: %8
(x,0)
if H(\) # p then
add (A, p) to X; Q  {¢"}

if X was modified then
H «+ infer(X); X: {(4;B; C; D/0;0;0;1)}

re-initialize @ if necessary;
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Initialize H, Q, X;

(ﬁDv 0)
repeat 0.1)
(A, p, Q) < QRM(H, Q); H: %8
(x,0)
if H(\) # p then
add (A, p) to X; Q  {g™ q7}
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The JIRP Algorithm

Initialize H, Q, X;
repeat
(A, p, Q) + QRM(H, Q);
It is crucial to
infer minimal
reward machines

if H(\) # p then
add (\, p) to X;

if X was modified then
H < infer(X);
re-initialize @ if necessary;
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A SAT-Based Inference Algorithm for Reward Machines

sample X

create propositional
formula &%

derive reward
is ®X satisfiable? —————| machine of size
no yes n from model
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A SAT-Based Inference Algorithm for Reward Machines

n « 0 1. ®X is satisfiable iff

there exists a reward

l machine of size n that
is consistent with X

sample X

o= 2. A model of &%
! contains sufficient
l ! information to
|
|
|
|
|
|
|

construct a consistent
reward machine of
size n

create propositional
formula &% «- -}

derive reward
is ®X satisfiable? —————| machine of size
no yes n from model
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Encoding Reward Machines in Propositional Logic

We use two sets of propositional variables to encode reward machines:

dpi.q encodes the transition function of the reward machine
(i.e., the machine transitions from state p to state g on reading symbol /)

Op.0,r encodes the output function of the reward machine
(i.e., the machine outputs reward r in state p on reading symbol /)
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Encoding Reward Machines in Propositional Logic

We use two sets of propositional variables to encode reward machines:

dpi.q encodes the transition function of the reward machine
(i.e., the machine transitions from state p to state g on reading symbol /)

Op.0,r encodes the output function of the reward machine
(i.e., the machine outputs reward r in state p on reading symbol /)

Enforcing deterministic functions

We impose pseudo-Boolean constraints to enforce for each pair of state p and input a that
» exactly one variable d, ¢ 4 is set to true

» exactly one variable o, ¢, is set to true
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Consistency with Examples

We introduce a set of auxiliary variables:

X\,p encodes the run of the reward machine on all prefixes of examples
(i.e., the machine reaches state p after reading the prefix \)
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Consistency with Examples

We introduce a set of auxiliary variables:

X\,p encodes the run of the reward machine on all prefixes of examples
(i.e., the machine reaches state p after reading the prefix \)

Enforcing consistency with the examples

reward machine:
{ /\ one(Xy,gys-- - Xu,qn) | N Xe,q

u€Pref(X)
-

(xap A dpr.g) = Xag .
€,q1

X\p 7 Opt,r
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Consistency with Examples

We introduce a set of auxiliary variables:

X\,p encodes the run of the reward machine on all prefixes of examples
(i.e., the machine reaches state p after reading the prefix \)

Enforcing consistency with the examples

reward machine:
[ /\ one(Xu,qys - - - Xu,gn) | A\ Xe,qs

uePref(X) %(/\’p){ > (¢, r) @

(xap A dpr.g) = Xag

X\, p — Op.t,r
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JIRP: Theoretical Result

Theorem (Ahmad, Gavran, Majumdar, N., Topcu, Wu, and Xu)

Given

» a sufficient episode length
» an c-greedy exploration strategy

we have the following:

1. JIRP almost surely learns the “true” reward machine

2. JIRP almost surely converges to an optimal policy

Daniel Neider: Reinforcement Learning with Reward Machines 13




JIRP: Empirical Results

Office World Scenario (Icarte et al., 2018)

1.0 1.0 1.0
0.8 0.8 0.8
TO0.6 To0.6 TO0.6
s s s
20.4 204 20.4
0.2 — JRP 0.2 — HRL 0.2 —— DDQN
0.0 0.0 0.0
0 100000 200000 300000 400000 0 100000 200000 300000 400000 0 100000 200000 300000 400000
number of training steps number of training steps number of training steps

Conclusion

» JIRP is the only method that converges to an optimal policy

» JIRP converges faster than any of the competing methods
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2. Reinforcement Learning with
Stochastic Reward Machines

(joint work with Jan Corazza and Ivan Gavran)



An Environment with Stochastic Rewards

T: tools $$ M: market ©,
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T: G; M: 1.9
M <
T
J
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A
T: tools $$ M: market ©,

Daniel Neider: Reinforcement Learning with Reward Machines 15




An Environment with Stochastic Rewards

T: G; M: 1.9
M <
T: G; M: 2.2
T
J
oo
A
T: tools $$ M: market ©,

Daniel Neider: Reinforcement Learning with Reward Machines 15




An Environment with Stochastic Rewards

T: G; M: 1.9
M

L T; G; M: 2.2
_1 T: 5 M: 1.2

T
A T: 5 M: 0.9

oo
&
T: tools $$ M: market ©,
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An Environment with Stochastic Rewards

T: G; M: 1.9
M
T: G; M: 2.2
T: 5 M: 1.2
T

T: 5 M: 0.9

09

(=]

» If the label sequences are identical, no
T: tools 3§ M: market ©, reward machine matches both traces
. . [~—<]

» If the label sequences are different, the
resulting reward machine explodes in
size
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Stochastic Reward Machines (SRM)

(_'Mv O)

T, G, M: 1.9 (=T,0) (=(GV $),0) (M, U(1.9,2.2))
T; G; M: 2.2 %< > (7.0) Q
T: 5 M: 1.2

(M, U(0.9.1.2))
T: 5; M: 0.9

(—\M,O)
Outputs are bounded continuous distributions
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Equivalence in Expectation

Two SRMs A and B are equivalent in
expectation (A ~g B) if they output
sequences of distributions with equal

expected values for each label sequence A: »Q BY )Q—/l>>Q -

Daniel Neider: Reinforcement Learning with Reward Machines 17




Equivalence in Expectation

Two SRMs A and B are equivalent in
expectation (A ~g B) if they output
sequences of distributions with equal

expected values for each label sequence A: »Q - —)\— >©—/E\>Q ->

Corollary ;
If two SRMs are equivalent in expectation, A

then they induce the same optimal policy in B: %Q Y ,>©_€,Q -

an environment
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A Naive Solution

A naive algorithm m e .

1. Collect many samples T oM : 19 i
2. Take the average reward in every position T M- ; 59 i
of the same trajectory —— : l

3. Construct an ordinary reward machine T: C: M: i 21 i
based on the average rewards : i

T: G; M: i 2.0 i

average: 2.05
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A Naive Solution

A naive algorithm m e .

1. Collect many samples T oM : 19 i

2. Take the average reward in every position T G M L ool

of the same trajectory i i

3. Construct an ordinary reward machine T G- M: Lot

based on the average rewards — i i

T, G; M: i 2.0 i

Problem o
Collecting samples is too slow! average: 2.05
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One Can Do Better Under Two Assumptions

~—
)
1. Probability distributions are continuous
and have bounded support with

“width" ¢
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One Can Do Better Under Two Assumptions

—
0
1. Probability distributions are continuous 2. The noise from one distribution does not
and have bounded support with fully conceal the signal from another one
“width" § (except in symmetric circumstances)
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One Can Do Better Under Two Assumptions

we will eventually observe
enough rewards to differentiate

*

R

5 > 6

1. Probability distributions are continuous 2. The noise from one distribution does not
and have bounded support with fully conceal the signal from another one
“width" § (except in symmetric circumstances)
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One Can Do Better Under Two Assumptions

no differentiation necessary:

equal expectations
|

A

[ ® @ °
—
0
1. Probability distributions are continuous 2. The noise from one distribution does not
and have bounded support with fully conceal the signal from another one
“width" § (except in symmetric circumstances)
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SRMI

Initialize H, Q, X, A;
repeat

(Avpv Q) A QRM(H7 Q)'

add (X, p) to A; \ one would keep a
moving average in practice
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SRMI

Initialize H, Q, X, A;

repeat
(A, Q) <~ QRM(H, Q); infers a minimal
add (A, p) to A; d-consistent “proto”-SRM

(only cares for d-consistency,

if H is not d-consistent with (), p) then not estimating distribution)

add (A, p) to X;
H' + infer(X);
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SRMI

Initialize H, Q, X, A;

repeat
(A p, Q) < QRM(H, Q);
add (), p) to A; corrects outputs of H’
by estimating distribution
if H is not d-consistent with (), p) then parameters from samples in A

add (A, p) to X;
H' + infer(X);
H < estimate(H’, A);

re-initialize @ if necessary;

Daniel Neider: Reinforcement Learning with Reward Machines 20




An SMT-Based Inference Algorithm for Stochastic Reward Machines

sample X

create SMT
formula W/

l

is WX satisfiable? derl.ve proto”-SRM
no yes of size n from model

Daniel Neider: Reinforcement Learning with Reward Machines 21




Encoding Stochastic Reward Machines in SMT

We use propositional and real-valued variables to encode a “proto”-SRM:

dpiq €B encodes the transition function of the reward machine
x\p €B encodes the run of the reward machine on prefixes from X
ope €ER encodes a “conjectured mean” of an output distribution

(i.e., the distr. returned in state p on reading symbol ¢ has mean o, /)

Enforcing consistency with the examples

SRM:
6 (>‘a P) (Ea op.f)
XA,p_>‘Op,€_r|§§ g WU it >
Xe,qi Xx,p X\t,q
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SRMI: Theoretical Result

Theorem (Corazza, Gavran, N.)

Given
> a sufficient episode length
» an e-greedy exploration strategy
» Assumptions 1 and 2 hold for the “true” (environment) SRM

we have the following:

1. SRMI almost surely learns a SRM that is equivalent in expectation to the “true” SRM

2. SRMI almost surely converges to an optimal policy
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SRMI: Empirical Results

Mining Environment

stochastic rewards deterministic rewards
1 14
0.8 0.8
o .
£ 06- T 0.6
g g
204 £ 04+
— SRMI — SRMI
0.2+ —baseline 0.2 — baseline
0L el L (R
0 05 1 15 2 25 3 0 05 1 15 2 25 3
steps 106 steps -10°
Conclusion

» SRMI converges faster than the baseline method
» SRMI’s performance does not degrade in the case of deterministic rewards
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Probilistic Reward Machin

Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)

Inferring Probabilistic Reward Machines from Non-Markovian Reward Signals
for Reinforcement Learning

Taylor Dohmen'*, Noah Topper”*, George Atia’, Andre Beckus’,
Ashutosh Trivedi', Alvaro Velasquez®

! University of Colorado Boulder
2 University of Central Florida
3 Air Force Research Laboratory

Abstract 2021). They also serve as a memory mechanism for rea-
soning over partially observable env1r0nments (Icane et al.

ical settings is

The success of reinforcement learning in t
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3. Advice-Guided Reinforcement Learning

(joint work with Jean-Raphaél Gaglione, Ivan Gavran, Ufuk Topcu,
Bo Wu, and Zhe Xu)



Advice-Guided Reinforcement Learning

reward reward
machine machine
is given is inferred

Icarte et a., 2019
Furelos-Blanco et al., 2020
Gaon & Brafman, 2020
Xu et al., 2020

Icarte et al., 2018
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Advice-Guided Reinforcement Learning

reward reward
machine machine
is given is inferred

Icarte et a., 2019

~ Furelos-Blanco et al., 2020
. H Gaon & Brafman, 2020
In thls part Xu et al., 2020

Icarte et al., 2018
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Advice DFAs

We formalize advice by means of regular languages:

» Deterministic Finite Automata (DFA)
» Regular expressions

» Linear Temporal Logic
> ...
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Advice DFAs

We formalize advice by means of regular languages:

» Deterministic Finite Automata (DFA) ¢ A

» Regular expressions

» Linear Temporal Logic 5 A

> ... A
-BAN-A

v

“every A is
followed by B”
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Advice DFAs

We formalize advice by means of regular languages:

» Deterministic Finite Automata (DFA) ¢ A

» Regular expressions

» Linear Temporal Logic 5 A

> ... A
-BAN-A

Compatibility of advice DFAs (i.e., semantics)

v

A reward can only be positive (negative/non-zero)
if the advice DFA accepts the label sequence

» A reward machine satisfying this property folﬁ)\ﬁx ﬁyISB”
is called compatible
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TG =100

Initialize reward machine H;
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TG =100

Q: {qpl}

Initialize reward machine H;

Initialize a set Q of g-functions;
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TG =100

Q: {qpl}

Initialize reward machine H;
Initialize a set Q of g-functions;

Initialize a sample X of traces;
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TG =100

Q: {qP1}

Initialize reward machine H;
Initialize a set Q of g-functions;
Initialize a sample X of traces;

Initialize a set D of advice DFAs;

o

o ese)
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AdvisoRL

Initialize H, @, X, D;

repeat

(A p, Q) < QRM(H, Q); H: % (.0)
Q: {qu}
X: 0

o (OO
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AdvisoRL

Initialize H, @, X, D;

: — *,0
(A7, Q) « QRM(H, Q); =100

Q: {qP1}

o (OO
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AdvisoRL

Initialize H, @, X, D;

_ TG =1
(A, p, Q) <~ QRM(H, Q);
;

Q: {qP1}

o (OO

Daniel Neider: Reinforcement Learning with Reward Machines 28




AdvisoRL

Initialize H, @, X, D;

_ TG =1
(A, p, Q) <~ QRM(H, Q);
;

0;0;0:1
if H(\) # p then

add (A, p) to X; @ {d"}

o (OO
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AdvisoRL

Initialize H, @, X, D;

_ TG =1
(A, p, Q) <~ QRM(H, Q);
;

0;0;0:1
if H(\) # p then

add (A, p) to X; @ {d"}

X: {(A;B; C;D/0;0;0;1)}

o (OO
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AdvisoRL

Initialize H, @, X, D;

_ TG =1
(A, p, Q) <~ QRM(H, Q);
;

0;0;0:1
if H(\) # p then

add (A, p) to X; @ {d"}

if (), p) is not compatible with
some D € D then X: {(A;B; C;D/0;0;0;1)}

remove D from D;
-A A -B B
A B
MfeselFone)
B D
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AdvisoRL

Initialize H, @, X, D;

_ TG =1
(A, p, Q) <~ QRM(H, Q);
;

0;0;0:1
if H(\) # p then

add (A, p) to X; @ {d"}

if (), p) is not compatible with
some D € D then X: {(A;B; C;D/0;0;0;1)}

remove D from D;
-A A
@A\
- {- \6 }
B
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AdvisoRL

Initialize H, @, X, D;
repeat

(A p; Q) < QRM(H, Q); 1 H: % (x.0)

if H(\) # p then
add (), p) to X; @ {d”}

if (), p) is not compatible with
some D € D then X: {(A;B; C;D/0;0;0;1)}

remove D from D;

if X or D were modified then A
H « infer(X, D); D: { - }
B
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AdvisoRL

Initialize H, Q, X, D; (—A, 0) (~D,0)
repeat 6 (A.0) B0
L 0 N (B.0)
(A . Q) < QRM(H, Q); 1 o )

if H(\) # p then
add (), p) to X; Q  {¢}

if (), p) is not compatible with
some D € D then X: {(A;B; C;D/0;0;0;1)}

remove D from D;

if X or D were modified then A
H « infer(X, D); D: { - }
B
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AdvisoRL

Initialize H, Q, X, D; (—A, 0) (~D,0)
repeat n %é (A,0) (o) (B,0)

if H(\) # p then

add (A, p) to X; Q@ {d)

if (), p) is not compatible with
some D € D then X: {(A;B; C;D/0;0;0;1)}

remove D from D;

if X or D were modified then A
H « infer(X, D); D: { - }
B

re-initialize @ if necessary;—
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AdvisoRL

Initialize H, Q, X, D; (—A, 0) (~D,0)
repeat n %é (A,0) (o) (B,0)
(A, p, Q) < QRM(H, Q); ' N
D,1
if H(\) # p then (0:1)
add (A, p) to X; e {a™, 7,97}

if (), p) is not compatible with
some D € D then X: {(A;B; C;D/0;0;0;1)}

remove D from D;

if X or D were modified then A
H « infer(X, D); D: { - }
B

re-initialize @ if necessary;—
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A SAT-Based Inference Algorithm for Reward Machines

sample X
advice DFAs D

create propositional
X,D
formula ¢,

derive reward
. . X.D e i .
is ®," satisfiable? [—— machine of size
no yes n from model
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AdvisoRL: Theoretical Result

Theorem (N., Gaglione, Gavran, Topcu, Wu, Xu)

Given
» a sufficient episode length
» an c-greedy exploration strategy

we have the following:

1. AdvisoRL almost surely learns the “true” reward machine

2. AdvisoRL almost surely converges to an optimal policy
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AdvisoRL: Empirical Results

Office World Scenario (lcarte et al., 2018)

AdvisoRL
. 1.0
Conclusion
. 0.8 o
» AdvisoRL's performance - (b}
improves with the “quality” of =06 {d}
. . {9}
the given advice =
g o4 {b, d, g}
> AdvisoRL is robust to incorrect 0.2 {bd}
dvice . el
a {bdbg}
0.0 E
0 200000 400000 600000

number of training steps
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Conclusion



Reinforcement Learning with Temporal Causal Information
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Grid World Example

bw» G—e
C P XXXXXka
ko » Ge
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Grid World Example

Performance Comparison
1.0
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0.0 —— Without TL-CD
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Conclusion

Summary

» We have been on a journey through reinforcement learning with reward machines
» There are several extension (often by other research groups)
» partial observability, active automata learning, etc.

Future work

» Incorporating (temporal) causal information
» Automatically synthesizing high level propositions

> More expressive classes of finite-state machines (e.g., counter)
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Newly Established Research Center at UA Ruhr

- — | CENTER FOR TRUSTWORTHY
DATA SCIENCE AND SECURITY
[

UA RUHR | RESEARCH ALLIANCE
» Three universities: University of Duisburg-Essen, University of Bochum,
TU Dortmund University

» Four disciplines: Computer science, IT Security, Statistics, Psychology

We offer opportunities ...

» Collaborations with academia and industry

» Open positions for research group leaders, postdocs, Ph.D.s, students
» Internship program

> ...
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