
Reinforcement Learning with Reward Machines

Daniel Neider

Theorietag “Automaten und Formale Sprachen”
RPTU/MPI-SWS, Kaiserslautern, Germany

4 October 2023

Reinforcement Learning

agent

environment

state +
rewardaction

Daniel Neider: Reinforcement Learning with Reward Machines 1

Labeled Markov Decision Processes

Map-marker-alt

Battery-three-quarters

I Actions A = {ARROW-UP,ARROW-DOWN,ARROW-LEFT,ARROW-RIGHT}
I Labels P = {Map-marker-alt,Battery-three-quarters}

M = (S, sI , A,P, p, L, R, γ)

set S of statesinitial state sI ∈ Sactions A and labels P
transition function

p : S × A × S → [0, 1]
labeling function

L : S × A × S → P
reward function

R : S × A × S → R s s ′ARROW-RIGHT; 0.5

;Map-marker-alt; 1

discount factor γ ∈ (0, 1)

Daniel Neider: Reinforcement Learning with Reward Machines 2

Labeled Markov Decision Processes

Map-marker-alt

Battery-three-quarters

I Actions A = {ARROW-UP,ARROW-DOWN,ARROW-LEFT,ARROW-RIGHT}
I Labels P = {Map-marker-alt,Battery-three-quarters}

M = (S, sI , A,P, p, L, R, γ)

set S of statesinitial state sI ∈ Sactions A and labels P
transition function

p : S × A × S → [0, 1]
labeling function

L : S × A × S → P
reward function

R : S × A × S → R s s ′ARROW-RIGHT; 0.5

;Map-marker-alt; 1

discount factor γ ∈ (0, 1)

Daniel Neider: Reinforcement Learning with Reward Machines 2

Labeled Markov Decision Processes

Map-marker-alt

Battery-three-quarters

I Actions A = {ARROW-UP,ARROW-DOWN,ARROW-LEFT,ARROW-RIGHT}
I Labels P = {Map-marker-alt,Battery-three-quarters}

M = (S, sI , A,P, p, L, R, γ)

set S of states

initial state sI ∈ Sactions A and labels P
transition function

p : S × A × S → [0, 1]
labeling function

L : S × A × S → P
reward function

R : S × A × S → R s s ′ARROW-RIGHT; 0.5

;Map-marker-alt; 1

discount factor γ ∈ (0, 1)

Daniel Neider: Reinforcement Learning with Reward Machines 2

Labeled Markov Decision Processes

Map-marker-alt

Battery-three-quarters

I Actions A = {ARROW-UP,ARROW-DOWN,ARROW-LEFT,ARROW-RIGHT}
I Labels P = {Map-marker-alt,Battery-three-quarters}

M = (S, sI , A,P, p, L, R, γ)

set S of states

initial state sI ∈ S

actions A and labels P
transition function

p : S × A × S → [0, 1]
labeling function

L : S × A × S → P
reward function

R : S × A × S → R s s ′ARROW-RIGHT; 0.5

;Map-marker-alt; 1

discount factor γ ∈ (0, 1)

Daniel Neider: Reinforcement Learning with Reward Machines 2

Labeled Markov Decision Processes

Map-marker-alt

Battery-three-quarters

I Actions A = {ARROW-UP,ARROW-DOWN,ARROW-LEFT,ARROW-RIGHT}
I Labels P = {Map-marker-alt,Battery-three-quarters}

M = (S, sI , A,P, p, L, R, γ)

set S of statesinitial state sI ∈ S

actions A and labels P

transition function
p : S × A × S → [0, 1]

labeling function
L : S × A × S → P

reward function
R : S × A × S → R s s ′ARROW-RIGHT; 0.5

;Map-marker-alt; 1

discount factor γ ∈ (0, 1)

Daniel Neider: Reinforcement Learning with Reward Machines 2

Labeled Markov Decision Processes

Map-marker-alt

Battery-three-quarters

I Actions A = {ARROW-UP,ARROW-DOWN,ARROW-LEFT,ARROW-RIGHT}
I Labels P = {Map-marker-alt,Battery-three-quarters}

M = (S, sI , A,P, p, L, R, γ)

set S of statesinitial state sI ∈ Sactions A and labels P

transition function
p : S × A × S → [0, 1]

labeling function
L : S × A × S → P

reward function
R : S × A × S → R

s s ′ARROW-RIGHT; 0.5

;Map-marker-alt; 1
discount factor γ ∈ (0, 1)

Daniel Neider: Reinforcement Learning with Reward Machines 2

Labeled Markov Decision Processes

Map-marker-alt

Battery-three-quarters

I Actions A = {ARROW-UP,ARROW-DOWN,ARROW-LEFT,ARROW-RIGHT}
I Labels P = {Map-marker-alt,Battery-three-quarters}

M = (S, sI , A,P, p, L, R, γ)

set S of statesinitial state sI ∈ Sactions A and labels P
transition function

p : S × A × S → [0, 1]

labeling function
L : S × A × S → P

reward function
R : S × A × S → R

s s ′ARROW-RIGHT; 0.5;Map-marker-alt

; 1
discount factor γ ∈ (0, 1)

Daniel Neider: Reinforcement Learning with Reward Machines 2

Labeled Markov Decision Processes

Map-marker-alt

Battery-three-quarters

I Actions A = {ARROW-UP,ARROW-DOWN,ARROW-LEFT,ARROW-RIGHT}
I Labels P = {Map-marker-alt,Battery-three-quarters}

M = (S, sI , A,P, p, L, R, γ)

set S of statesinitial state sI ∈ Sactions A and labels P
transition function

p : S × A × S → [0, 1]
labeling function

L : S × A × S → P

reward function
R : S × A × S → R s s ′ARROW-RIGHT; 0.5;Map-marker-alt; 1

discount factor γ ∈ (0, 1)

Daniel Neider: Reinforcement Learning with Reward Machines 2

Labeled Markov Decision Processes

Map-marker-alt

Battery-three-quarters

I Actions A = {ARROW-UP,ARROW-DOWN,ARROW-LEFT,ARROW-RIGHT}
I Labels P = {Map-marker-alt,Battery-three-quarters}

M = (S, sI , A,P, p, L, R, γ)

set S of statesinitial state sI ∈ Sactions A and labels P
transition function

p : S × A × S → [0, 1]
labeling function

L : S × A × S → P
reward function

R : S × A × S → R s s ′ARROW-RIGHT; 0.5;Map-marker-alt; 1

discount factor γ ∈ (0, 1)

Daniel Neider: Reinforcement Learning with Reward Machines 2

A Very, Very Brief Introduction to Q-Learning

Find a (probabilistic) policy π : S × A→ [0, 1] maximizing the expected discounted reward

Eπ

[k∑
i=0

γ i · R(si , ai+1, si+1)
]

of every trajectory s0a0s1 . . . sk+1, k ∈ N, through the MDP

Q-Learning
1. Maintain a table Q : S × A→ R (initialized to, e.g., 0)
2. Explore the environment according to π, resulting in a trajectory s0a1s1a2s2 . . .

3. In step t, update Q by
Q(st , at)← (1− α) · Q(st , at) + α

[
R(st , at+1, st+1) + γ maxa Q(st+1, a)

]
4. After each episode, update π by π(s, a)← arg maxa∈AQ(s, a)
5. Repeat until this process converges; π is then the optimal policy

Daniel Neider: Reinforcement Learning with Reward Machines 3

A Very, Very Brief Introduction to Q-Learning

Find a (probabilistic) policy π : S × A→ [0, 1] maximizing the expected discounted reward

Eπ

[k∑
i=0

γ i · R(si , ai+1, si+1)
]

of every trajectory s0a0s1 . . . sk+1, k ∈ N, through the MDP

Q-Learning
1. Maintain a table Q : S × A→ R (initialized to, e.g., 0)
2. Explore the environment according to π, resulting in a trajectory s0a1s1a2s2 . . .

3. In step t, update Q by
Q(st , at)← (1− α) · Q(st , at) + α

[
R(st , at+1, st+1) + γ maxa Q(st+1, a)

]
4. After each episode, update π by π(s, a)← arg maxa∈AQ(s, a)
5. Repeat until this process converges; π is then the optimal policy

Daniel Neider: Reinforcement Learning with Reward Machines 3

Non-Markovian Rewards

A B

C

B

A D

A; B; C; D: 1

A; B; B; C; D: 1

A; D: -1

A; C; D: -1

How to handle such situations?

Daniel Neider: Reinforcement Learning with Reward Machines 4

Non-Markovian Rewards

A B

C

B

A D A; B; C; D: 1

A; B; B; C; D: 1

A; D: -1

A; C; D: -1

How to handle such situations?

Daniel Neider: Reinforcement Learning with Reward Machines 4

Non-Markovian Rewards

A B

C

B

A D A; B; C; D: 1

A; B; B; C; D: 1

A; D: -1

A; C; D: -1

How to handle such situations?

Daniel Neider: Reinforcement Learning with Reward Machines 4

Non-Markovian Rewards

A B

C

B

A D A; B; C; D: 1

A; B; B; C; D: 1

A; D: -1

A; C; D: -1

How to handle such situations?

Daniel Neider: Reinforcement Learning with Reward Machines 4

Non-Markovian Rewards

A B

C

B

A D A; B; C; D: 1

A; B; B; C; D: 1

A; D: -1

A; C; D: -1

How to handle such situations?

Daniel Neider: Reinforcement Learning with Reward Machines 4

Non-Markovian Rewards

A B

C

B

A D A; B; C; D: 1

A; B; B; C; D: 1

A; D: -1

A; C; D: -1

How to handle such situations?

Daniel Neider: Reinforcement Learning with Reward Machines 4

Reinforcement Learning with Reward Machines

Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling (ICAPS 2020)

Joint Inference of Reward Machines and Policies for Reinforcement Learning

Zhe Xu,1∗ Ivan Gavran,2∗ Yousef Ahmad,1 Rupak Majumdar,2 Daniel Neider,2 Ufuk Topcu,1

Bo Wu1
1University of Texas at Austin, Austin, TX

2Max Planck Institute for Software Systems, Kaiserslautern, Germany{zhexu, utopcu, bwu3}@utexas.edu, {gavran, rupak, neider}@mpi-sws.org, ysa6549@gmail.com

Abstract Precup and Singh 1999; Dietterich 2000; Parr and Russell
Reinforcement Learning with Stochastic Reward Machines

Jan Corazza1,2, Ivan Gavran2, Daniel Neider2

1 University of Zagreb
2 Max Planck Institute for Software System

corazzajan@gmail.com, gavran@mpi-sws.org, neider@mpi-sws.org

Abstract Reward machines only model deterministic rewards

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

Advice-Guided Reinforcement Learning in a non-Markovian Environment

Daniel Neider1, Jean-Raphael Gaglione2, Ivan Gavran1, Ufuk Topcu3, Bo Wu3, Zhe Xu4

1 Max Planck Institute for Software Systems, Kaiserslautern, Germany
2 Ecole Polytechnique, France

3 University of Texas at Austin, Texas, USA
4 Arizona State University, Arizona, USA

Abstract Clearly a reward function is Markovian or non

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

Daniel Neider: Reinforcement Learning with Reward Machines 5

1. Joint Inference of Policies
and Reward Machines
(joint work with Yousef Ahmad, Ivan Gavran, Rupak Majumdar,
Ufuk Topcu, Bo Wu, and Zhe Xu)

Reward Machines

A; B; C; D: 1

A; B; B; C; D: 1

A; D: -1

A; C; D: -1

Bacchus et al. (1996)
Jothimurgan et al. (2019)
Icarte et al. (2018)
Brafman et al. (2018)

“Use automata/temporal logic to
capture non-Markovian rewards”

(A, 0)

(A, 0)

(B, 0)

(B, 0)

(C , 0)

(C , 0)

(D, 1)

(?, 0)

(D, −
1)

(D
,−

1)

(D
,−

1)

(?, 0)

(B ∨ C , 0)
(C

, 0)

(A
,0)

(A
∨

B, 0
)

(¬D, 0)
(D, −1)

A B

C

B

A D

Daniel Neider: Reinforcement Learning with Reward Machines 6

Reward Machines

A; B; C; D: 1

A; B; B; C; D: 1

A; D: -1

A; C; D: -1

Bacchus et al. (1996)
Jothimurgan et al. (2019)
Icarte et al. (2018)
Brafman et al. (2018)

(A, 0)

(A, 0)

(B, 0)

(B, 0)

(C , 0)

(C , 0)

(D, 1)

(?, 0)

(D, −
1)

(D
,−

1)

(D
,−

1)

(?, 0)

(B ∨ C , 0)
(C

, 0)

(A
,0)

(A
∨

B, 0
)

(¬D, 0)
(D, −1)

A B

C

B

A D

Daniel Neider: Reinforcement Learning with Reward Machines 6

Reward Machines

A; B; C; D: 1

A; B; B; C; D: 1

A; D: -1

A; C; D: -1

Bacchus et al. (1996)
Jothimurgan et al. (2019)
Icarte et al. (2018)
Brafman et al. (2018)

(A, 0)

(A, 0)

(B, 0)

(B, 0)

(C , 0)

(C , 0)

(D, 1)

(?, 0)

(D, −
1)

(D
,−

1)

(D
,−

1)

(?, 0)

(B ∨ C , 0)
(C

, 0)

(A
,0)

(A
∨

B, 0
)

(¬D, 0)
(D, −1)

A B

C

B

A D

Daniel Neider: Reinforcement Learning with Reward Machines 6

Reward Machines

A; B; C; D: 1

A; B; B; C; D: 1

A; D: -1

A; C; D: -1

Bacchus et al. (1996)
Jothimurgan et al. (2019)
Icarte et al. (2018)
Brafman et al. (2018)

(A, 0)

(A, 0)

(B, 0)

(B, 0)

(C , 0)

(C , 0)

(D, 1)

(?, 0)

(D, −
1)

(D
,−

1)

(D
,−

1)

(?, 0)

(B ∨ C , 0)
(C

, 0)

(A
,0)

(A
∨

B, 0
)

(¬D, 0)

(D, −1)

A B

C

B

A D

Daniel Neider: Reinforcement Learning with Reward Machines 6

Reward Machines

A; B; C; D: 1

A; B; B; C; D: 1

A; D: -1

A; C; D: -1

Bacchus et al. (1996)
Jothimurgan et al. (2019)
Icarte et al. (2018)
Brafman et al. (2018)

(A, 0)

(A, 0)

(B, 0)

(B, 0)

(C , 0)

(C , 0)

(D, 1)

(?, 0)

(D, −
1)

(D
,−

1)

(D
,−

1)

(?, 0)

(B ∨ C , 0)
(C

, 0)

(A
,0)

(A
∨

B, 0
)

(¬D, 0)
(D, −1)

A B

C

B

A D

Daniel Neider: Reinforcement Learning with Reward Machines 6

Reward Machines

A; B; C; D: 1

A; B; B; C; D: 1

A; D: -1

A; C; D: -1

Bacchus et al. (1996)
Jothimurgan et al. (2019)
Icarte et al. (2018)
Brafman et al. (2018)

(A, 0)

(A, 0)

(B, 0)

(B, 0)

(C , 0)

(C , 0)

(D, 1)

(?, 0)

(D, −
1)

(D
,−

1)

(D
,−

1)

(?, 0)

(B ∨ C , 0)
(C

, 0)

(A
,0)

(A
∨

B, 0
)

(¬D, 0)
(D, −1)

A B

C

B

A D

Daniel Neider: Reinforcement Learning with Reward Machines 6

QRM: Q-Learning with Reward Machines

Icarte et al. (2018) have proposed an extension of the
Q-learning algorithm, named QRM, that can handle
reward machines
I avoids building the cross-product explicitly
I exploits the structure of the reward machine

during exploration

Problem
How does one construct reward machines?
I direct construction, from temporal logics, learning,

. . .

Using Reward Machines for High-Level Task Specification
and Decomposition in Reinforcement Learning

Rodrigo Toro Icarte 1 2 Toryn Q. Klassen 1 Richard Valenzano 3 Sheila A. McIlraith 1 2

Abstract
In this paper we propose Reward Machines – a
type of finite state machine that supports the spec-
ification of reward functions while exposing re-
ward function structure to the learner and support-
ing decomposition. We then present Q-Learning
for Reward Machines (QRM), an algorithm which
appropriately decomposes the reward machine
and uses off-policy q-learning to simultaneously
learn subpolicies for the different components.
QRM is guaranteed to converge to an optimal pol-
icy in the tabular case, in contrast to Hierarchical
Reinforcement Learning methods which might
converge to suboptimal policies. We demonstrate
this behavior experimentally in two discrete do-
mains. We also show how function approximation
methods like neural networks can be incorporated
into QRM, and that doing so can find better poli-
cies more quickly than hierarchical methods in a
domain with a continuous state space.

1. Introduction
A standard assumption in reinforcement learning (RL) is
that the agent does not have access to the environment model
(Sutton & Barto, 1998). This means that it does not know, a
priori, the transition probabilities or reward function mani-
fest in the environment. To learn optimal behavior, an RL
agent must therefore interact with the environment and learn
from its experience. While assuming that the transition prob-
abilities are unknown seems reasonable, there is less reason
to hide the reward function from the agent. Artificial agents
cannot inherently perceive reward from the environment;
someone must program those rewards functions (even if the
agent is interacting with the real world). Typically, though,

1Department of Computer Science, University of Toronto,
Toronto, Ontario, Canada 2Vector Institute, Toronto, Ontario,
Canada 3Element AI, Toronto, Ontario, Canada. Correspondence
to: Rodrigo Toro Icarte <rntoro@cs.toronto.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

a programmed reward function is given as a black box to the
agent. The agent can query the function for the reward in
the current situation, but does not have access to whatever
structures or high-level ideas the programmer may have
used in defining it. However, an agent that had access to
the specification of the reward function might be able to use
it to decompose the problem and speed up learning. We
consider a way to do so in this paper.

Previous work on giving an agent knowledge about the
reward function focus on defining a task specification
language, usually based on sub-goal sequences (Singh,
1992a;b) or linear temporal logic (Li et al., 2017; Cama-
cho et al., 2017; Littman et al., 2017; Toro Icarte et al.,
2018; Hasanbeig et al., 2018), and then generate a reward
function towards fulfilling that specification. In this work,
we instead directly tackle the problem of defining reward
functions that expose structure to the agent. As such, our
approach is able to reward behaviors to varying degrees in
manners that cannot be expressed by previous approaches.

There are two main contributions of this work. First, we in-
troduce a type of finite state machine, called the Reward Ma-
chine, which we use in defining rewards. A reward machine
allows for composing different reward functions in flexi-
ble ways, including concatenations, loops, and conditional
rules. As an agent acts in the environment, moving from
state to state, it also moves from state to state within a re-
ward machine (as determined by high-level events detected
within the environment). After every transition, the reward
machine outputs the reward function the agent should use
at that time. For example, we might construct a reward
machine for “delivering coffee to an office” using two states.
In the first state, the agent does not receive any rewards, but
it moves to the second state whenever it gets the coffee. In
the second state, the agent gets rewards after delivering the
coffee. The advantage of defining rewards this way is that
the agent knows that the problem consists of two stages and
might use this information for decomposing it.

Our second contribution is to introduce an algorithm, called
Q-Learning for Reward Machines (QRM), that can exploit a
reward machine’s internal structure to decompose the prob-
lem and thereby improve sample efficiency. QRM’s task
decomposition does not prune optimal policies and uses q-

ICML 2018

Daniel Neider: Reinforcement Learning with Reward Machines 7

QRM: Q-Learning with Reward Machines

Icarte et al. (2018) have proposed an extension of the
Q-learning algorithm, named QRM, that can handle
reward machines
I avoids building the cross-product explicitly
I exploits the structure of the reward machine

during exploration

Problem
How does one construct reward machines?
I direct construction, from temporal logics, learning,

. . .

Using Reward Machines for High-Level Task Specification
and Decomposition in Reinforcement Learning

Rodrigo Toro Icarte 1 2 Toryn Q. Klassen 1 Richard Valenzano 3 Sheila A. McIlraith 1 2

Abstract
In this paper we propose Reward Machines – a
type of finite state machine that supports the spec-
ification of reward functions while exposing re-
ward function structure to the learner and support-
ing decomposition. We then present Q-Learning
for Reward Machines (QRM), an algorithm which
appropriately decomposes the reward machine
and uses off-policy q-learning to simultaneously
learn subpolicies for the different components.
QRM is guaranteed to converge to an optimal pol-
icy in the tabular case, in contrast to Hierarchical
Reinforcement Learning methods which might
converge to suboptimal policies. We demonstrate
this behavior experimentally in two discrete do-
mains. We also show how function approximation
methods like neural networks can be incorporated
into QRM, and that doing so can find better poli-
cies more quickly than hierarchical methods in a
domain with a continuous state space.

1. Introduction
A standard assumption in reinforcement learning (RL) is
that the agent does not have access to the environment model
(Sutton & Barto, 1998). This means that it does not know, a
priori, the transition probabilities or reward function mani-
fest in the environment. To learn optimal behavior, an RL
agent must therefore interact with the environment and learn
from its experience. While assuming that the transition prob-
abilities are unknown seems reasonable, there is less reason
to hide the reward function from the agent. Artificial agents
cannot inherently perceive reward from the environment;
someone must program those rewards functions (even if the
agent is interacting with the real world). Typically, though,

1Department of Computer Science, University of Toronto,
Toronto, Ontario, Canada 2Vector Institute, Toronto, Ontario,
Canada 3Element AI, Toronto, Ontario, Canada. Correspondence
to: Rodrigo Toro Icarte <rntoro@cs.toronto.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

a programmed reward function is given as a black box to the
agent. The agent can query the function for the reward in
the current situation, but does not have access to whatever
structures or high-level ideas the programmer may have
used in defining it. However, an agent that had access to
the specification of the reward function might be able to use
it to decompose the problem and speed up learning. We
consider a way to do so in this paper.

Previous work on giving an agent knowledge about the
reward function focus on defining a task specification
language, usually based on sub-goal sequences (Singh,
1992a;b) or linear temporal logic (Li et al., 2017; Cama-
cho et al., 2017; Littman et al., 2017; Toro Icarte et al.,
2018; Hasanbeig et al., 2018), and then generate a reward
function towards fulfilling that specification. In this work,
we instead directly tackle the problem of defining reward
functions that expose structure to the agent. As such, our
approach is able to reward behaviors to varying degrees in
manners that cannot be expressed by previous approaches.

There are two main contributions of this work. First, we in-
troduce a type of finite state machine, called the Reward Ma-
chine, which we use in defining rewards. A reward machine
allows for composing different reward functions in flexi-
ble ways, including concatenations, loops, and conditional
rules. As an agent acts in the environment, moving from
state to state, it also moves from state to state within a re-
ward machine (as determined by high-level events detected
within the environment). After every transition, the reward
machine outputs the reward function the agent should use
at that time. For example, we might construct a reward
machine for “delivering coffee to an office” using two states.
In the first state, the agent does not receive any rewards, but
it moves to the second state whenever it gets the coffee. In
the second state, the agent gets rewards after delivering the
coffee. The advantage of defining rewards this way is that
the agent knows that the problem consists of two stages and
might use this information for decomposing it.

Our second contribution is to introduce an algorithm, called
Q-Learning for Reward Machines (QRM), that can exploit a
reward machine’s internal structure to decompose the prob-
lem and thereby improve sample efficiency. QRM’s task
decomposition does not prune optimal policies and uses q-

ICML 2018

Daniel Neider: Reinforcement Learning with Reward Machines 7

Joint Inference of Policies and Reward Machines

Key idea
I Given the current hypothesis reward

machine H, perform QRM and record
the resulting label sequence λ = `1 . . . `n
and reward sequence ρ = r1 . . . rn

I If the pair (λ, ρ) contradicts H, learn a
new reward machine H ′

I Repeat until this process converges to
the “true” reward machine and an
optimal policy

labeled MDP

sI s1

s2

s3 s4

`1, r1

`2, r2

`3, r3

`4, r4

Daniel Neider: Reinforcement Learning with Reward Machines 8

The JIRP Algorithm

Initialize reward machine H;

Initialize a set Q of q-functions;

Initialize a sample X of traces;

H: p1 (?, 0)

p1 p2

(¬D, 0)

(D, 1)

(?, 0)

Q:
{
qp1

}{
qp1 , qp2

}

X : ∅
{
(A; B; C ; D/0; 0; 0; 1)

}

Daniel Neider: Reinforcement Learning with Reward Machines 9

The JIRP Algorithm

Initialize reward machine H;

Initialize a set Q of q-functions;

Initialize a sample X of traces;

H: p1 (?, 0)

p1 p2

(¬D, 0)

(D, 1)

(?, 0)

Q:
{
qp1

}

{
qp1 , qp2

}

X : ∅
{
(A; B; C ; D/0; 0; 0; 1)

}

Daniel Neider: Reinforcement Learning with Reward Machines 9

The JIRP Algorithm

Initialize reward machine H;

Initialize a set Q of q-functions;

Initialize a sample X of traces;

H: p1 (?, 0)

p1 p2

(¬D, 0)

(D, 1)

(?, 0)

Q:
{
qp1

}

{
qp1 , qp2

}

X : ∅

{
(A; B; C ; D/0; 0; 0; 1)

}

Daniel Neider: Reinforcement Learning with Reward Machines 9

The JIRP Algorithm

Initialize H, Q, X ;

repeat

(λ, ρ, Q)← QRM(H, Q);

if H(λ) 6= ρ then
add (λ, ρ) to X ;

if X was modified then
H ← infer(X);
re-initialize Q if necessary;

H: p1 (?, 0)

p1 p2

(¬D, 0)

(D, 1)

(?, 0)

Q:
{
qp1

}

{
qp1 , qp2

}

X : ∅

{
(A; B; C ; D/0; 0; 0; 1)

}

Daniel Neider: Reinforcement Learning with Reward Machines 9

The JIRP Algorithm

Initialize H, Q, X ;

repeat

(λ, ρ, Q)← QRM(H, Q);

if H(λ) 6= ρ then
add (λ, ρ) to X ;

if X was modified then
H ← infer(X);
re-initialize Q if necessary;

H: p1 (?, 0)

p1 p2

(¬D, 0)

(D, 1)

(?, 0)

Q:
{
qp1

}

{
qp1 , qp2

}

X : ∅

{
(A; B; C ; D/0; 0; 0; 1)

}

A; B; C ; D

Daniel Neider: Reinforcement Learning with Reward Machines 9

The JIRP Algorithm

Initialize H, Q, X ;

repeat

(λ, ρ, Q)← QRM(H, Q);

if H(λ) 6= ρ then
add (λ, ρ) to X ;

if X was modified then
H ← infer(X);
re-initialize Q if necessary;

H: p1 (?, 0)

p1 p2

(¬D, 0)

(D, 1)

(?, 0)

Q:
{
qp1

}

{
qp1 , qp2

}

X : ∅

{
(A; B; C ; D/0; 0; 0; 1)

}

A; B; C ; D

0; 0; 0; 1

Daniel Neider: Reinforcement Learning with Reward Machines 9

The JIRP Algorithm

Initialize H, Q, X ;

repeat

(λ, ρ, Q)← QRM(H, Q);

if H(λ) 6= ρ then
add (λ, ρ) to X ;

if X was modified then
H ← infer(X);
re-initialize Q if necessary;

H: p1 (?, 0)

p1 p2

(¬D, 0)

(D, 1)

(?, 0)

Q:
{
qp1

}

{
qp1 , qp2

}

X : ∅

{
(A; B; C ; D/0; 0; 0; 1)

}

A; B; C ; D

0; 0; 0; 1

Daniel Neider: Reinforcement Learning with Reward Machines 9

The JIRP Algorithm

Initialize H, Q, X ;

repeat

(λ, ρ, Q)← QRM(H, Q);

if H(λ) 6= ρ then
add (λ, ρ) to X ;

if X was modified then
H ← infer(X);
re-initialize Q if necessary;

H: p1 (?, 0)

p1 p2

(¬D, 0)

(D, 1)

(?, 0)

Q:
{
qp1

}

{
qp1 , qp2

}

X :

∅

{
(A; B; C ; D/0; 0; 0; 1)

}

A; B; C ; D

0; 0; 0; 1

Daniel Neider: Reinforcement Learning with Reward Machines 9

The JIRP Algorithm

Initialize H, Q, X ;

repeat

(λ, ρ, Q)← QRM(H, Q);

if H(λ) 6= ρ then
add (λ, ρ) to X ;

if X was modified then
H ← infer(X);

re-initialize Q if necessary;

H: p1 (?, 0)

p1 p2

(¬D, 0)

(D, 1)

(?, 0)

Q:
{
qp1

}

{
qp1 , qp2

}

X :

∅

{
(A; B; C ; D/0; 0; 0; 1)

}

Daniel Neider: Reinforcement Learning with Reward Machines 9

The JIRP Algorithm

Initialize H, Q, X ;

repeat

(λ, ρ, Q)← QRM(H, Q);

if H(λ) 6= ρ then
add (λ, ρ) to X ;

if X was modified then
H ← infer(X);

re-initialize Q if necessary;

H:

p1 (?, 0)

p1 p2

(¬D, 0)

(D, 1)

(?, 0)

Q:
{
qp1

}

{
qp1 , qp2

}

X :

∅

{
(A; B; C ; D/0; 0; 0; 1)

}

Daniel Neider: Reinforcement Learning with Reward Machines 9

The JIRP Algorithm

Initialize H, Q, X ;

repeat

(λ, ρ, Q)← QRM(H, Q);

if H(λ) 6= ρ then
add (λ, ρ) to X ;

if X was modified then
H ← infer(X);
re-initialize Q if necessary;

H:

p1 (?, 0)

p1 p2

(¬D, 0)

(D, 1)

(?, 0)

Q:
{
qp1

}

{
qp1 , qp2

}

X :

∅

{
(A; B; C ; D/0; 0; 0; 1)

}

Daniel Neider: Reinforcement Learning with Reward Machines 9

The JIRP Algorithm

Initialize H, Q, X ;

repeat

(λ, ρ, Q)← QRM(H, Q);

if H(λ) 6= ρ then
add (λ, ρ) to X ;

if X was modified then
H ← infer(X);
re-initialize Q if necessary;

H:

p1 (?, 0)

p1 p2

(¬D, 0)

(D, 1)

(?, 0)

Q:

{
qp1

}

{
qp1 , qp2

}

X :

∅

{
(A; B; C ; D/0; 0; 0; 1)

}

Daniel Neider: Reinforcement Learning with Reward Machines 9

The JIRP Algorithm

Initialize H, Q, X ;

repeat

(λ, ρ, Q)← QRM(H, Q);

if H(λ) 6= ρ then
add (λ, ρ) to X ;

if X was modified then
H ← infer(X);
re-initialize Q if necessary;

It is crucial to
infer minimal

reward machines

Daniel Neider: Reinforcement Learning with Reward Machines 9

A SAT-Based Inference Algorithm for Reward Machines

n ← 0

n ← n + 1

create propositional
formula ΦX

n

is ΦX
n satisfiable?

derive reward
machine of size
n from model

sample X

no yes

1. ΦX
n is satisfiable iff

there exists a reward
machine of size n that
is consistent with X

2. A model of ΦX
n

contains sufficient
information to
construct a consistent
reward machine of
size n

Daniel Neider: Reinforcement Learning with Reward Machines 10

A SAT-Based Inference Algorithm for Reward Machines

n ← 0

n ← n + 1

create propositional
formula ΦX

n

is ΦX
n satisfiable?

derive reward
machine of size
n from model

sample X

no yes

1. ΦX
n is satisfiable iff

there exists a reward
machine of size n that
is consistent with X

2. A model of ΦX
n

contains sufficient
information to
construct a consistent
reward machine of
size n

Daniel Neider: Reinforcement Learning with Reward Machines 10

Encoding Reward Machines in Propositional Logic

We use two sets of propositional variables to encode reward machines:

dp,`,q encodes the transition function of the reward machine
(i.e., the machine transitions from state p to state q on reading symbol `)

op,`,r encodes the output function of the reward machine
(i.e., the machine outputs reward r in state p on reading symbol `)

Enforcing deterministic functions
We impose pseudo-Boolean constraints to enforce for each pair of state p and input a that
I exactly one variable dp,`,q is set to true
I exactly one variable op,`,r is set to true

Daniel Neider: Reinforcement Learning with Reward Machines 11

Encoding Reward Machines in Propositional Logic

We use two sets of propositional variables to encode reward machines:

dp,`,q encodes the transition function of the reward machine
(i.e., the machine transitions from state p to state q on reading symbol `)

op,`,r encodes the output function of the reward machine
(i.e., the machine outputs reward r in state p on reading symbol `)

Enforcing deterministic functions
We impose pseudo-Boolean constraints to enforce for each pair of state p and input a that
I exactly one variable dp,`,q is set to true
I exactly one variable op,`,r is set to true

Daniel Neider: Reinforcement Learning with Reward Machines 11

Consistency with Examples

We introduce a set of auxiliary variables:

xλ,p encodes the run of the reward machine on all prefixes of examples
(i.e., the machine reaches state p after reading the prefix λ)

Enforcing consistency with the examples[∧
u∈Pref (X)

one(xu,q1 , . . . , xu,qn)
]
∧ xε,qI

(
xλ,p ∧ dp,`,q

)
→ xλ`,q

xλ,p → op,`,r

qI

p q

xε,qI xλ,p xλ`,q

(λ, ρ) (`, r)

reward machine:

Daniel Neider: Reinforcement Learning with Reward Machines 12

Consistency with Examples

We introduce a set of auxiliary variables:

xλ,p encodes the run of the reward machine on all prefixes of examples
(i.e., the machine reaches state p after reading the prefix λ)

Enforcing consistency with the examples[∧
u∈Pref (X)

one(xu,q1 , . . . , xu,qn)
]
∧ xε,qI

(
xλ,p ∧ dp,`,q

)
→ xλ`,q

xλ,p → op,`,r

qI

p q

xε,qI

xλ,p xλ`,q

(λ, ρ) (`, r)

reward machine:

Daniel Neider: Reinforcement Learning with Reward Machines 12

Consistency with Examples

We introduce a set of auxiliary variables:

xλ,p encodes the run of the reward machine on all prefixes of examples
(i.e., the machine reaches state p after reading the prefix λ)

Enforcing consistency with the examples[∧
u∈Pref (X)

one(xu,q1 , . . . , xu,qn)
]
∧ xε,qI

(
xλ,p ∧ dp,`,q

)
→ xλ`,q

xλ,p → op,`,r

qI p q

xε,qI xλ,p xλ`,q

(λ, ρ) (`, r)
reward machine:

Daniel Neider: Reinforcement Learning with Reward Machines 12

Consistency with Examples

We introduce a set of auxiliary variables:

xλ,p encodes the run of the reward machine on all prefixes of examples
(i.e., the machine reaches state p after reading the prefix λ)

Enforcing consistency with the examples[∧
u∈Pref (X)

one(xu,q1 , . . . , xu,qn)
]
∧ xε,qI

(
xλ,p ∧ dp,`,q

)
→ xλ`,q

xλ,p → op,`,r

qI p q

xε,qI xλ,p xλ`,q

(λ, ρ) (`, r)
reward machine:

Daniel Neider: Reinforcement Learning with Reward Machines 12

JIRP: Theoretical Result

Theorem (Ahmad, Gavran, Majumdar, N., Topcu, Wu, and Xu)
Given
I a sufficient episode length
I an ε-greedy exploration strategy

we have the following:

1. JIRP almost surely learns the “true” reward machine
2. JIRP almost surely converges to an optimal policy

Daniel Neider: Reinforcement Learning with Reward Machines 13

JIRP: Empirical Results

Office World Scenario (Icarte et al., 2018)

JIRP HRL DDQN

Conclusion
I JIRP is the only method that converges to an optimal policy
I JIRP converges faster than any of the competing methods

Daniel Neider: Reinforcement Learning with Reward Machines 14

2. Reinforcement Learning with
Stochastic Reward Machines
(joint work with Jan Corazza and Ivan Gavran)

An Environment with Stochastic Rewards

M

T

S

G

T: tools Tools M: market Donate

S: silver mine MOUNTAIN G: gold mine MOUNTAIN

T; G; M: 1.9

T; G; M: 2.2

T; S; M: 1.2

T; S; M: 0.9

I If the label sequences are identical, no
reward machine matches both traces

I If the label sequences are different, the
resulting reward machine explodes in
size

Daniel Neider: Reinforcement Learning with Reward Machines 15

An Environment with Stochastic Rewards

M

T

S

G

T: tools Tools M: market Donate

S: silver mine MOUNTAIN G: gold mine MOUNTAIN

T; G; M: 1.9

T; G; M: 2.2

T; S; M: 1.2

T; S; M: 0.9

I If the label sequences are identical, no
reward machine matches both traces

I If the label sequences are different, the
resulting reward machine explodes in
size

Daniel Neider: Reinforcement Learning with Reward Machines 15

An Environment with Stochastic Rewards

M

T

S

G

T: tools Tools M: market Donate

S: silver mine MOUNTAIN G: gold mine MOUNTAIN

T; G; M: 1.9

T; G; M: 2.2

T; S; M: 1.2

T; S; M: 0.9

I If the label sequences are identical, no
reward machine matches both traces

I If the label sequences are different, the
resulting reward machine explodes in
size

Daniel Neider: Reinforcement Learning with Reward Machines 15

An Environment with Stochastic Rewards

M

T

S

G

T: tools Tools M: market Donate

S: silver mine MOUNTAIN G: gold mine MOUNTAIN

T; G; M: 1.9

T; G; M: 2.2

T; S; M: 1.2

T; S; M: 0.9

I If the label sequences are identical, no
reward machine matches both traces

I If the label sequences are different, the
resulting reward machine explodes in
size

Daniel Neider: Reinforcement Learning with Reward Machines 15

An Environment with Stochastic Rewards

M

T

S

G

T: tools Tools M: market Donate

S: silver mine MOUNTAIN G: gold mine MOUNTAIN

T; G; M: 1.9

T; G; M: 2.2

T; S; M: 1.2

T; S; M: 0.9

I If the label sequences are identical, no
reward machine matches both traces

I If the label sequences are different, the
resulting reward machine explodes in
size

Daniel Neider: Reinforcement Learning with Reward Machines 15

Stochastic Reward Machines (SRM)

T; G; M: 1.9

T; G; M: 2.2

T; S; M: 1.2

T; S; M: 0.9

(¬T , 0)

(T , 0)

(¬(G ∨ S), 0)
(G, 0)

(S, 0)

(¬M, 0)

(M, U(1.9, 2.2))

(¬M, 0)

(M, U(0.9, 1.2))

Outputs are bounded continuous distributions

Daniel Neider: Reinforcement Learning with Reward Machines 16

Equivalence in Expectation

Two SRMs A and B are equivalent in
expectation (A ∼E B) if they output
sequences of distributions with equal
expected values for each label sequence

Corollary
If two SRMs are equivalent in expectation,
then they induce the same optimal policy in
an environment

A:
λ `

B:
λ `

Daniel Neider: Reinforcement Learning with Reward Machines 17

Equivalence in Expectation

Two SRMs A and B are equivalent in
expectation (A ∼E B) if they output
sequences of distributions with equal
expected values for each label sequence

Corollary
If two SRMs are equivalent in expectation,
then they induce the same optimal policy in
an environment

A:
λ `

B:
λ `

Daniel Neider: Reinforcement Learning with Reward Machines 17

A Naive Solution

A naive algorithm
1. Collect many samples
2. Take the average reward in every position

of the same trajectory
3. Construct an ordinary reward machine

based on the average rewards

Problem
Collecting samples is too slow!

T; G; M: 1.9

T; G; M: 2.2

T; G; M: 2.1

T; G; M: 2.0

average: 2.05

Daniel Neider: Reinforcement Learning with Reward Machines 18

A Naive Solution

A naive algorithm
1. Collect many samples
2. Take the average reward in every position

of the same trajectory
3. Construct an ordinary reward machine

based on the average rewards

Problem
Collecting samples is too slow!

T; G; M: 1.9

T; G; M: 2.2

T; G; M: 2.1

T; G; M: 2.0

average: 2.05

Daniel Neider: Reinforcement Learning with Reward Machines 18

One Can Do Better Under Two Assumptions

δ

1. Probability distributions are continuous
and have bounded support with
“width“ δ

> δ

we will eventually observe
enough rewards to differentiate

no differentiation necessary:
equal expectations

2. The noise from one distribution does not
fully conceal the signal from another one
(except in symmetric circumstances)

Daniel Neider: Reinforcement Learning with Reward Machines 19

One Can Do Better Under Two Assumptions

δ

1. Probability distributions are continuous
and have bounded support with
“width“ δ

> δ

we will eventually observe
enough rewards to differentiate

no differentiation necessary:
equal expectations

2. The noise from one distribution does not
fully conceal the signal from another one
(except in symmetric circumstances)

Daniel Neider: Reinforcement Learning with Reward Machines 19

One Can Do Better Under Two Assumptions

δ

1. Probability distributions are continuous
and have bounded support with
“width“ δ

> δ

we will eventually observe
enough rewards to differentiate

no differentiation necessary:
equal expectations

2. The noise from one distribution does not
fully conceal the signal from another one
(except in symmetric circumstances)

Daniel Neider: Reinforcement Learning with Reward Machines 19

One Can Do Better Under Two Assumptions

δ

1. Probability distributions are continuous
and have bounded support with
“width“ δ

> δ

we will eventually observe
enough rewards to differentiate

no differentiation necessary:
equal expectations

2. The noise from one distribution does not
fully conceal the signal from another one
(except in symmetric circumstances)

Daniel Neider: Reinforcement Learning with Reward Machines 19

SRMI

Initialize H, Q, X , A;

repeat

(λ, ρ, Q)← QRM(H, Q);

add (λ, ρ) to A;

if H is not δ-consistent with (λ, ρ) then
add (λ, ρ) to X ;
H ′ ← infer(X);
H ← estimate(H ′, A);
re-initialize Q if necessary;

one would keep a
moving average in practice

Daniel Neider: Reinforcement Learning with Reward Machines 20

SRMI

Initialize H, Q, X , A;

repeat

(λ, ρ, Q)← QRM(H, Q);

add (λ, ρ) to A;

if H is not δ-consistent with (λ, ρ) then
add (λ, ρ) to X ;
H ′ ← infer(X);

H ← estimate(H ′, A);
re-initialize Q if necessary;

infers a minimal
δ-consistent “proto”-SRM

(only cares for δ-consistency,
not estimating distribution)

Daniel Neider: Reinforcement Learning with Reward Machines 20

SRMI

Initialize H, Q, X , A;

repeat

(λ, ρ, Q)← QRM(H, Q);

add (λ, ρ) to A;

if H is not δ-consistent with (λ, ρ) then
add (λ, ρ) to X ;
H ′ ← infer(X);
H ← estimate(H ′, A);
re-initialize Q if necessary;

corrects outputs of H ′

by estimating distribution
parameters from samples in A

Daniel Neider: Reinforcement Learning with Reward Machines 20

An SMT-Based Inference Algorithm for Stochastic Reward Machines

n ← 0

n ← n + 1

create SMT
formula ΨX

n

is ΨX
n satisfiable? derive “proto”-SRM

of size n from model

sample X

no yes

Daniel Neider: Reinforcement Learning with Reward Machines 21

Encoding Stochastic Reward Machines in SMT

We use propositional and real-valued variables to encode a “proto”-SRM:

dp,`,q ∈ B encodes the transition function of the reward machine

xλ,p ∈ B encodes the run of the reward machine on prefixes from X

op,` ∈ R encodes a “conjectured mean” of an output distribution
(i.e., the distr. returned in state p on reading symbol ` has mean op,`)

Enforcing consistency with the examples

xλ,p → |op,` − r | ≤ δ

2
qI p q

xε,qI xλ,p xλ`,q

(λ, ρ) (`, op,`)
SRM:

Daniel Neider: Reinforcement Learning with Reward Machines 22

SRMI: Theoretical Result

Theorem (Corazza, Gavran, N.)
Given
I a sufficient episode length
I an ε-greedy exploration strategy
I Assumptions 1 and 2 hold for the “true” (environment) SRM

we have the following:

1. SRMI almost surely learns a SRM that is equivalent in expectation to the “true” SRM
2. SRMI almost surely converges to an optimal policy

Daniel Neider: Reinforcement Learning with Reward Machines 23

SRMI: Empirical Results
Mining Environment

stochastic rewards
re

w
ar

d
deterministic rewards

re
w

ar
d

Conclusion
I SRMI converges faster than the baseline method
I SRMI’s performance does not degrade in the case of deterministic rewards

Daniel Neider: Reinforcement Learning with Reward Machines 24

Probilistic Reward Machines

Inferring Probabilistic Reward Machines from Non-Markovian Reward Signals
for Reinforcement Learning

Taylor Dohmen1*, Noah Topper2*, George Atia2, Andre Beckus3,
Ashutosh Trivedi1, Alvaro Velasquez3

1 University of Colorado Boulder
2 University of Central Florida

3 Air Force Research Laboratory

Abstract

The success of reinforcement learning in typical settings is
predicated on Markovian assumptions on the reward signal
b hi h t l ti l li i I t

2021). They also serve as a memory mechanism for rea-
soning over partially observable environments (Icarte et al.
2019), are useful for reward shaping to mitigate sparse re-
ward signals (Camacho et al. 2019; Velasquez and Melcer

Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)

Daniel Neider: Reinforcement Learning with Reward Machines 25

3. Advice-Guided Reinforcement Learning
(joint work with Jean-Raphaël Gaglione, Ivan Gavran, Ufuk Topcu,
Bo Wu, and Zhe Xu)

Advice-Guided Reinforcement Learning

reward
machine
is given

reward
machine

is inferred

Icarte et al., 2018 Icarte et a., 2019
Furelos-Blanco et al., 2020
Gaon & Brafman, 2020
Xu et al., 2020

Daniel Neider: Reinforcement Learning with Reward Machines 26

Advice-Guided Reinforcement Learning

reward
machine
is given

reward
machine

is inferred

in this part
Icarte et al., 2018 Icarte et a., 2019

Furelos-Blanco et al., 2020
Gaon & Brafman, 2020
Xu et al., 2020

Daniel Neider: Reinforcement Learning with Reward Machines 26

Advice DFAs

We formalize advice by means of regular languages:

I Deterministic Finite Automata (DFA)
I Regular expressions
I Linear Temporal Logic
I . . .

Compatibility of advice DFAs (i.e., semantics)
A reward can only be positive (negative/non-zero)
if the advice DFA accepts the label sequence
I A reward machine satisfying this property

is called compatible

“every A is
followed by B”

¬A

A

A

B

¬B ∧ ¬A

?

Daniel Neider: Reinforcement Learning with Reward Machines 27

Advice DFAs

We formalize advice by means of regular languages:

I Deterministic Finite Automata (DFA)
I Regular expressions
I Linear Temporal Logic
I . . .

Compatibility of advice DFAs (i.e., semantics)
A reward can only be positive (negative/non-zero)
if the advice DFA accepts the label sequence
I A reward machine satisfying this property

is called compatible

“every A is
followed by B”

¬A

A

A

B

¬B ∧ ¬A

?

Daniel Neider: Reinforcement Learning with Reward Machines 27

Advice DFAs

We formalize advice by means of regular languages:

I Deterministic Finite Automata (DFA)
I Regular expressions
I Linear Temporal Logic
I . . .

Compatibility of advice DFAs (i.e., semantics)
A reward can only be positive (negative/non-zero)
if the advice DFA accepts the label sequence
I A reward machine satisfying this property

is called compatible

“every A is
followed by B”

¬A

A

A

B

¬B ∧ ¬A

?

Daniel Neider: Reinforcement Learning with Reward Machines 27

AdvisoRL

Initialize reward machine H;

Initialize a set Q of q-functions;

Initialize a sample X of traces;

Initialize a set D of advice DFAs;

H: p1 (?, 0)

p1 p2 p3

(¬A, 0)

(A, 0) (B, 0)

(¬D, 0)

(D, 1)

Q:
{
qp1

}{
qp1 , qp2 , qp3

}

X : ∅
{
(A; B; C ; D/0; 0; 0; 1)

}

D:
{ ¬A

A
A

B

;

¬B

B
B

D

}

Daniel Neider: Reinforcement Learning with Reward Machines 28

AdvisoRL

Initialize reward machine H;

Initialize a set Q of q-functions;

Initialize a sample X of traces;

Initialize a set D of advice DFAs;

H: p1 (?, 0)

p1 p2 p3

(¬A, 0)

(A, 0) (B, 0)

(¬D, 0)

(D, 1)

Q:
{
qp1

}

{
qp1 , qp2 , qp3

}

X : ∅
{
(A; B; C ; D/0; 0; 0; 1)

}

D:
{ ¬A

A
A

B

;

¬B

B
B

D

}

Daniel Neider: Reinforcement Learning with Reward Machines 28

AdvisoRL

Initialize reward machine H;

Initialize a set Q of q-functions;

Initialize a sample X of traces;

Initialize a set D of advice DFAs;

H: p1 (?, 0)

p1 p2 p3

(¬A, 0)

(A, 0) (B, 0)

(¬D, 0)

(D, 1)

Q:
{
qp1

}

{
qp1 , qp2 , qp3

}

X : ∅

{
(A; B; C ; D/0; 0; 0; 1)

}

D:
{ ¬A

A
A

B

;

¬B

B
B

D

}

Daniel Neider: Reinforcement Learning with Reward Machines 28

AdvisoRL

Initialize reward machine H;

Initialize a set Q of q-functions;

Initialize a sample X of traces;

Initialize a set D of advice DFAs;

H: p1 (?, 0)

p1 p2 p3

(¬A, 0)

(A, 0) (B, 0)

(¬D, 0)

(D, 1)

Q:
{
qp1

}

{
qp1 , qp2 , qp3

}

X : ∅

{
(A; B; C ; D/0; 0; 0; 1)

}

D:
{ ¬A

A
A

B

;

¬B

B
B

D

}

Daniel Neider: Reinforcement Learning with Reward Machines 28

AdvisoRL
Initialize H, Q, X , D;

repeat

(λ, ρ, Q)← QRM(H, Q);

if H(λ) 6= ρ then
add (λ, ρ) to X ;

if (λ, ρ) is not compatible with
some D ∈ D then
remove D from D;

if X or D were modified then
H ← infer(X , D);
re-initialize Q if necessary;

H: p1 (?, 0)

p1 p2 p3

(¬A, 0)

(A, 0) (B, 0)

(¬D, 0)

(D, 1)

Q:
{
qp1

}

{
qp1 , qp2 , qp3

}

X : ∅

{
(A; B; C ; D/0; 0; 0; 1)

}

D:
{ ¬A

A
A

B

;

¬B

B
B

D

}

Daniel Neider: Reinforcement Learning with Reward Machines 28

AdvisoRL
Initialize H, Q, X , D;

repeat

(λ, ρ, Q)← QRM(H, Q);

if H(λ) 6= ρ then
add (λ, ρ) to X ;

if (λ, ρ) is not compatible with
some D ∈ D then
remove D from D;

if X or D were modified then
H ← infer(X , D);
re-initialize Q if necessary;

H: p1 (?, 0)

p1 p2 p3

(¬A, 0)

(A, 0) (B, 0)

(¬D, 0)

(D, 1)

Q:
{
qp1

}

{
qp1 , qp2 , qp3

}

X : ∅

{
(A; B; C ; D/0; 0; 0; 1)

}

D:
{ ¬A

A
A

B

;

¬B

B
B

D

}

A; B; C ; D

Daniel Neider: Reinforcement Learning with Reward Machines 28

AdvisoRL
Initialize H, Q, X , D;

repeat

(λ, ρ, Q)← QRM(H, Q);

if H(λ) 6= ρ then
add (λ, ρ) to X ;

if (λ, ρ) is not compatible with
some D ∈ D then
remove D from D;

if X or D were modified then
H ← infer(X , D);
re-initialize Q if necessary;

H: p1 (?, 0)

p1 p2 p3

(¬A, 0)

(A, 0) (B, 0)

(¬D, 0)

(D, 1)

Q:
{
qp1

}

{
qp1 , qp2 , qp3

}

X : ∅

{
(A; B; C ; D/0; 0; 0; 1)

}

D:
{ ¬A

A
A

B

;

¬B

B
B

D

}

A; B; C ; D

0; 0; 0; 1

Daniel Neider: Reinforcement Learning with Reward Machines 28

AdvisoRL
Initialize H, Q, X , D;

repeat

(λ, ρ, Q)← QRM(H, Q);

if H(λ) 6= ρ then
add (λ, ρ) to X ;

if (λ, ρ) is not compatible with
some D ∈ D then
remove D from D;

if X or D were modified then
H ← infer(X , D);
re-initialize Q if necessary;

H: p1 (?, 0)

p1 p2 p3

(¬A, 0)

(A, 0) (B, 0)

(¬D, 0)

(D, 1)

Q:
{
qp1

}

{
qp1 , qp2 , qp3

}

X : ∅

{
(A; B; C ; D/0; 0; 0; 1)

}

D:
{ ¬A

A
A

B

;

¬B

B
B

D

}

A; B; C ; D

0; 0; 0; 1

Daniel Neider: Reinforcement Learning with Reward Machines 28

AdvisoRL
Initialize H, Q, X , D;

repeat

(λ, ρ, Q)← QRM(H, Q);

if H(λ) 6= ρ then
add (λ, ρ) to X ;

if (λ, ρ) is not compatible with
some D ∈ D then
remove D from D;

if X or D were modified then
H ← infer(X , D);
re-initialize Q if necessary;

H: p1 (?, 0)

p1 p2 p3

(¬A, 0)

(A, 0) (B, 0)

(¬D, 0)

(D, 1)

Q:
{
qp1

}

{
qp1 , qp2 , qp3

}

X :

∅

{
(A; B; C ; D/0; 0; 0; 1)

}

D:
{ ¬A

A
A

B

;

¬B

B
B

D

}

A; B; C ; D

0; 0; 0; 1

Daniel Neider: Reinforcement Learning with Reward Machines 28

AdvisoRL
Initialize H, Q, X , D;

repeat

(λ, ρ, Q)← QRM(H, Q);

if H(λ) 6= ρ then
add (λ, ρ) to X ;

if (λ, ρ) is not compatible with
some D ∈ D then
remove D from D;

if X or D were modified then
H ← infer(X , D);
re-initialize Q if necessary;

H: p1 (?, 0)

p1 p2 p3

(¬A, 0)

(A, 0) (B, 0)

(¬D, 0)

(D, 1)

Q:
{
qp1

}

{
qp1 , qp2 , qp3

}

X :

∅

{
(A; B; C ; D/0; 0; 0; 1)

}

D:
{ ¬A

A
A

B

;

¬B

B
B

D

}

A; B; C ; D

0; 0; 0; 1

Daniel Neider: Reinforcement Learning with Reward Machines 28

AdvisoRL
Initialize H, Q, X , D;

repeat

(λ, ρ, Q)← QRM(H, Q);

if H(λ) 6= ρ then
add (λ, ρ) to X ;

if (λ, ρ) is not compatible with
some D ∈ D then
remove D from D;

if X or D were modified then
H ← infer(X , D);
re-initialize Q if necessary;

H: p1 (?, 0)

p1 p2 p3

(¬A, 0)

(A, 0) (B, 0)

(¬D, 0)

(D, 1)

Q:
{
qp1

}

{
qp1 , qp2 , qp3

}

X :

∅

{
(A; B; C ; D/0; 0; 0; 1)

}

D:
{ ¬A

A
A

B

}

¬B

B
B

D

}

A; B; C ; D

0; 0; 0; 1

Daniel Neider: Reinforcement Learning with Reward Machines 28

AdvisoRL
Initialize H, Q, X , D;

repeat

(λ, ρ, Q)← QRM(H, Q);

if H(λ) 6= ρ then
add (λ, ρ) to X ;

if (λ, ρ) is not compatible with
some D ∈ D then
remove D from D;

if X or D were modified then
H ← infer(X , D);

re-initialize Q if necessary;

H: p1 (?, 0)

p1 p2 p3

(¬A, 0)

(A, 0) (B, 0)

(¬D, 0)

(D, 1)

Q:
{
qp1

}

{
qp1 , qp2 , qp3

}

X :

∅

{
(A; B; C ; D/0; 0; 0; 1)

}

D:
{ ¬A

A
A

B

}

¬B

B
B

D

}

Daniel Neider: Reinforcement Learning with Reward Machines 28

AdvisoRL
Initialize H, Q, X , D;

repeat

(λ, ρ, Q)← QRM(H, Q);

if H(λ) 6= ρ then
add (λ, ρ) to X ;

if (λ, ρ) is not compatible with
some D ∈ D then
remove D from D;

if X or D were modified then
H ← infer(X , D);

re-initialize Q if necessary;

H:

p1 (?, 0)

p1 p2 p3

(¬A, 0)

(A, 0) (B, 0)

(¬D, 0)

(D, 1)

Q:
{
qp1

}

{
qp1 , qp2 , qp3

}

X :

∅

{
(A; B; C ; D/0; 0; 0; 1)

}

D:
{ ¬A

A
A

B

}

¬B

B
B

D

}

Daniel Neider: Reinforcement Learning with Reward Machines 28

AdvisoRL
Initialize H, Q, X , D;

repeat

(λ, ρ, Q)← QRM(H, Q);

if H(λ) 6= ρ then
add (λ, ρ) to X ;

if (λ, ρ) is not compatible with
some D ∈ D then
remove D from D;

if X or D were modified then
H ← infer(X , D);
re-initialize Q if necessary;

H:

p1 (?, 0)

p1 p2 p3

(¬A, 0)

(A, 0) (B, 0)

(¬D, 0)

(D, 1)

Q:
{
qp1

}

{
qp1 , qp2 , qp3

}

X :

∅

{
(A; B; C ; D/0; 0; 0; 1)

}

D:
{ ¬A

A
A

B

}

¬B

B
B

D

}

Daniel Neider: Reinforcement Learning with Reward Machines 28

AdvisoRL
Initialize H, Q, X , D;

repeat

(λ, ρ, Q)← QRM(H, Q);

if H(λ) 6= ρ then
add (λ, ρ) to X ;

if (λ, ρ) is not compatible with
some D ∈ D then
remove D from D;

if X or D were modified then
H ← infer(X , D);
re-initialize Q if necessary;

H:

p1 (?, 0)

p1 p2 p3

(¬A, 0)

(A, 0) (B, 0)

(¬D, 0)

(D, 1)

Q:

{
qp1

}

{
qp1 , qp2 , qp3

}

X :

∅

{
(A; B; C ; D/0; 0; 0; 1)

}

D:
{ ¬A

A
A

B

}

¬B

B
B

D

}

Daniel Neider: Reinforcement Learning with Reward Machines 28

A SAT-Based Inference Algorithm for Reward Machines

n ← 0

n ← n + 1

create propositional
formula ΦX ,D

n

is ΦX ,D
n satisfiable?

derive reward
machine of size
n from model

sample X
advice DFAs D

no yes

Daniel Neider: Reinforcement Learning with Reward Machines 29

AdvisoRL: Theoretical Result

Theorem (N., Gaglione, Gavran, Topcu, Wu, Xu)
Given
I a sufficient episode length
I an ε-greedy exploration strategy

we have the following:

1. AdvisoRL almost surely learns the “true” reward machine
2. AdvisoRL almost surely converges to an optimal policy

Daniel Neider: Reinforcement Learning with Reward Machines 30

AdvisoRL: Empirical Results

Conclusion
I AdvisoRL’s performance

improves with the “quality” of
the given advice

I AdvisoRL is robust to incorrect
advice

Office World Scenario (Icarte et al., 2018)
AdvisoRL

Daniel Neider: Reinforcement Learning with Reward Machines 31

Conclusion

Reinforcement Learning with Temporal Causal Information

Reinforcement Learning
with Temporal-Logic-Based Causal

Diagrams

Yash Paliwal1, Rajarshi Roy2(B), Jean-Raphaël Gaglione3,
Nasim Baharisangari1, Daniel Neider4,5, Xiaoming Duan6, Ufuk Topcu3,

and Zhe Xu1

1 Arizona State University, Tempe, AZ, USA
xzhe1@asu.edu

2 Max Planck Institute for Software Systems, Kaiserslautern, Germany
rajarshi008@gmail.com

3 University of Texas at Austin, Austin, TX, USA
4 TU D t d U i it D t d G

Daniel Neider: Reinforcement Learning with Reward Machines 32

Grid World Example

b I G¬e1

c I X X X X X k2

k2 I G¬e2

Daniel Neider: Reinforcement Learning with Reward Machines 33

Grid World Example

b I G¬e1

c I X X X X X k2

k2 I G¬e2

Daniel Neider: Reinforcement Learning with Reward Machines 33

Conclusion

Summary
I We have been on a journey through reinforcement learning with reward machines
I There are several extension (often by other research groups)

I partial observability, active automata learning, etc.

Future work
I Incorporating (temporal) causal information
I Automatically synthesizing high level propositions
I More expressive classes of finite-state machines (e.g., counter)

Daniel Neider: Reinforcement Learning with Reward Machines 34

Newly Established Research Center at UA Ruhr

I Three universities: University of Duisburg-Essen, University of Bochum,
TU Dortmund University

I Four disciplines: Computer science, IT Security, Statistics, Psychology

We offer opportunities . . .
I Collaborations with academia and industry
I Open positions for research group leaders, postdocs, Ph.D.s, students
I Internship program
I . . .

Daniel Neider: Reinforcement Learning with Reward Machines 35

