What's Decidable about Discrete Linear Dynamical Systems?

Joël Ouaknine

Max Planck Institute for Software Systems

Joint work with: Toghrul Karimov, Shaull Almagor, Ventsi Chonev, Edon Kelmendi, Engel Lefaucheux, Florian Luca, Joris Nieuwveld, David Purser, João Sousa Pinto, Anton Varonka, Markus Whiteland, James Worrell, ...

> Theorietag Automaten und Formale Sprachen Kaiserslautern, Oktober 2023

Partition \mathbb{R}^d into S_1

Partition \mathbb{R}^d into S_1, S_2

Partition \mathbb{R}^d into S_1, S_2, S_3, S_4

The Model-Checking Problem: Given W and a specification φ , decide if $W \vDash \varphi$

> The Model-Checking Problem: Given W and a specification φ , decide if $W \vDash \varphi$

• Deciding ω -Regular Properties on Linear Recurrence Sequences Almagor, Karimov, Kelmendi, O., Worrell, in *POPL* 2021

• What's Decidable about Linear Loops? Karimov, Lefaucheux, O., Purser, Varonka, Whiteland, Worrell, in *POPL* 2022

• The Power of Positivity Karimov, Kelmendi, Nieuwveld, O., Worrell, in *LICS* 2023

• What's Decidable about Discrete Linear Dynamical Systems? Karimov, Kelmendi, O., Worrell, in *Henzinger Festschrift* 2023

The Model-Checking Problem: Given W and a specification φ , decide if $W \vDash \varphi$

The Model-Checking Problem: Given W and a specification φ , decide if $W \vDash \varphi$

We consider:

• Two different kinds of linear dynamical systems (M, s):

The Model-Checking Problem: Given \mathcal{W} and a specification φ , decide if $\mathcal{W} \vDash \varphi$

- Two different kinds of linear dynamical systems (M, s):
 - arbitrary linear dynamical systems

The Model-Checking Problem: Given W and a specification φ , decide if $W \vDash \varphi$

- Two different kinds of linear dynamical systems (M, s):
 - arbitrary linear dynamical systems
 - diagonalisable linear dynamical systems

The Model-Checking Problem: Given W and a specification φ , decide if $W \vDash \varphi$

- Two different kinds of linear dynamical systems (*M*, *s*):
 - arbitrary linear dynamical systems
 - diagonalisable linear dynamical systems
- Two different kinds of specification formalisms:

w =generated by (M, s)

The Model-Checking Problem: Given W and a specification φ , decide if $W \vDash \varphi$

- Two different kinds of linear dynamical systems (*M*, *s*):
 - arbitrary linear dynamical systems
 - diagonalisable linear dynamical systems
- Two different kinds of specification formalisms:
 - arbitrary MSO (fancy version of LTL)

w =generated by (M, s)

The Model-Checking Problem: Given W and a specification φ , decide if $W \vDash \varphi$

- Two different kinds of linear dynamical systems (*M*, *s*):
 - arbitrary linear dynamical systems
 - diagonalisable linear dynamical systems
- Two different kinds of specification formalisms:
 - arbitrary MSO (fancy version of LTL)
 - prefix-independent MSO (denoted piMSO)

w =generated by (M, s)

The Model-Checking Problem: Given W and a specification φ , decide if $W \vDash \varphi$

- Two different kinds of linear dynamical systems (*M*, *s*):
 - arbitrary linear dynamical systems
 - diagonalisable linear dynamical systems
- Two different kinds of specification formalisms:
 - arbitrary MSO (fancy version of LTL)
 - prefix-independent MSO (denoted piMSO)
- Several different classes of semialgebraic predicates

The Model-Checking Problem: Given W and a specification φ , decide if $W \vDash \varphi$

- Two different kinds of linear dynamical systems (*M*, *s*):
 - arbitrary linear dynamical systems
 - diagonalisable linear dynamical systems
- Two different kinds of specification formalisms:
 - arbitrary MSO (fancy version of LTL)
 - prefix-independent MSO (denoted piMSO)
- Several different classes of semialgebraic predicates
- The use (or not) of *Skolem and/or Positivity oracles*

Which of the following specs are prefix-independent?

Which of the following specs are prefix-independent?

SKOLEM: F H

Which of the following specs are prefix-independent?

- SKOLEM: F H
- **2** Positivity: $\mathbf{G} \mathbf{H}^+$
Which of the following specs are prefix-independent?

- SKOLEM: F H
- **2** Positivity: $\mathbf{G} H^+$
- **3** Ultimate positivity: **F G** H^+

Which of the following specs are prefix-independent?

- SKOLEM: F H
- **2** Positivity: $\mathbf{G} H^+$
- **3** ULTIMATE POSITIVITY: **F G** H^+
- O infinite recurrence: **G F** *P*

Which of the following specs are prefix-independent?

- SKOLEM: F H
- **2** Positivity: $\mathbf{G} H^+$
- **3** ULTIMATE POSITIVITY: **F G** H^+
- **④** INFINITE RECURRENCE: **G F** P

Only (3) and (4)

 $\bullet\,$ The domain is the set of natural numbers $\mathbb N$

- $\bullet\,$ The domain is the set of natural numbers $\mathbb N$
- You are given a finite collection of monadic predicates (*P*, *Q*, *R*, ...)

- $\bullet\,$ The domain is the set of natural numbers $\mathbb N$
- You are given a finite collection of monadic predicates (P, Q, R, \ldots)
- \bullet You can use any integer, and expressions such as "+2"

- $\bullet\,$ The domain is the set of natural numbers $\mathbb N$
- You are given a finite collection of monadic predicates (P, Q, R, \ldots)
- You can use any integer, and expressions such as "+2"
- You are allowed to use "=" and "<" between integers

- $\bullet\,$ The domain is the set of natural numbers $\mathbb N$
- You are given a finite collection of monadic predicates (P, Q, R, \ldots)
- You can use any integer, and expressions such as "+2"
- You are allowed to use "=" and "<" between integers
- You can use both first-order variables (*x*, *y*, *z*, ...) and second-order monadic variables (*X*, *Y*, *Z*, ...)

- $\bullet\,$ The domain is the set of natural numbers $\mathbb N$
- You are given a finite collection of monadic predicates (P, Q, R, \ldots)
- You can use any integer, and expressions such as "+2"
- You are allowed to use "=" and "<" between integers
- You can use both first-order variables (*x*, *y*, *z*,...) and second-order monadic variables (*X*, *Y*, *Z*,...)
 - You can then write "X(y)" or " $y \in X$ " (same with P etc.)

- $\bullet\,$ The domain is the set of natural numbers $\mathbb N$
- You are given a finite collection of monadic predicates (P, Q, R, \ldots)
- You can use any integer, and expressions such as "+2"
- \bullet You are allowed to use "=" and "<" between integers
- You can use both first-order variables (*x*, *y*, *z*, ...) and second-order monadic variables (*X*, *Y*, *Z*, ...)

• You can then write "X(y)" or " $y \in X$ " (same with P etc.)

• You are allowed first- and second-order quantifiers, and all Boolean connectives

- $\bullet\,$ The domain is the set of natural numbers $\mathbb N$
- You are given a finite collection of monadic predicates (P, Q, R, \ldots)
- You can use any integer, and expressions such as "+2"
- \bullet You are allowed to use "=" and "<" between integers
- You can use both first-order variables (*x*, *y*, *z*, ...) and second-order monadic variables (*X*, *Y*, *Z*, ...)

• You can then write "X(y)" or " $y \in X$ " (same with P etc.)

• You are allowed first- and second-order quantifiers, and all Boolean connectives

Example: express "P eventually contains all even integers"

- $\bullet\,$ The domain is the set of natural numbers $\mathbb N$
- You are given a finite collection of monadic predicates (P, Q, R, \ldots)
- You can use any integer, and expressions such as "+2"
- \bullet You are allowed to use "=" and "<" between integers
- You can use both first-order variables (*x*, *y*, *z*,...) and second-order monadic variables (*X*, *Y*, *Z*,...)

• You can then write "X(y)" or " $y \in X$ " (same with P etc.)

• You are allowed first- and second-order quantifiers, and all Boolean connectives

Example: express "P eventually contains all even integers"

$$\exists X . 0 \in X \land 1 \notin X \land \forall x . (x \in X \leftrightarrow x + 2 \in X) \land \\ \exists y . \forall z > y . z \in X \rightarrow z \in P$$

- $\bullet\,$ The domain is the set of natural numbers $\mathbb N$
- You are given a finite collection of monadic predicates (P, Q, R, \ldots)
- You can use any integer, and expressions such as "+2"
- \bullet You are allowed to use "=" and "<" between integers
- You can use both first-order variables (*x*, *y*, *z*, ...) and second-order monadic variables (*X*, *Y*, *Z*, ...)

• You can then write "X(y)" or " $y \in X$ " (same with P etc.)

• You are allowed first- and second-order quantifiers, and all Boolean connectives

Example: express "P eventually contains all even integers"

$$\exists X . 0 \in X \land 1 \notin X \land \forall x . (x \in X \leftrightarrow x + 2 \in X) \land \\ \exists y . \forall z > y . z \in X \rightarrow z \in P$$

Question: Is this specification prefix-independent?

- $\bullet\,$ The domain is the set of natural numbers $\mathbb N$
- You are given a finite collection of monadic predicates (P, Q, R, \ldots)
- You can use any integer, and expressions such as "+2"
- \bullet You are allowed to use "=" and "<" between integers
- You can use both first-order variables (*x*, *y*, *z*, ...) and second-order monadic variables (*X*, *Y*, *Z*, ...)

• You can then write "X(y)" or " $y \in X$ " (same with P etc.)

• You are allowed first- and second-order quantifiers, and all Boolean connectives

Example: express "P eventually contains all even integers"

$$\exists X . 0 \in X \land 1 \notin X \land \forall x . (x \in X \leftrightarrow x + 2 \in X) \land \\ \exists y . \forall z > y . z \in X \rightarrow z \in P$$

Question: Is this specification prefix-independent? NO!

We work in ambient space \mathbb{R}^d

We work in ambient space \mathbb{R}^d

Definition (S: the semialgebraic sets)

A set is *semialgebraic* if it can be defined as a Boolean combination of polynomial inequalities.

We work in ambient space \mathbb{R}^d

Definition (S: the semialgebraic sets)

A set is *semialgebraic* if it can be defined as a Boolean combination of polynomial inequalities.

We work in ambient space \mathbb{R}^d

Definition (S: the semialgebraic sets)

A set is *semialgebraic* if it can be defined as a Boolean combination of polynomial inequalities.

Definition (C: the constructible sets)

A set is *constructible* if it can be defined as a Boolean combination of polynomial equalities. i.e., T = Boolean closure of *algebraic* sets.

We work in ambient space \mathbb{R}^d

Definition (S: the semialgebraic sets)

A set is *semialgebraic* if it can be defined as a Boolean combination of polynomial inequalities.

Definition (C: the constructible sets)

A set is *constructible* if it can be defined as a Boolean combination of polynomial equalities. i.e., T = Boolean closure of *algebraic* sets.

We work in ambient space \mathbb{R}^d

Definition (S: the semialgebraic sets)

A set is *semialgebraic* if it can be defined as a Boolean combination of polynomial inequalities.

Definition (C: the constructible sets)

A set is *constructible* if it can be defined as a Boolean combination of polynomial equalities. i.e., T = Boolean closure of *algebraic* sets.

Definition (\mathcal{T} : the tame sets)

The class \mathcal{T} comprises all semialgebraic sets that are *either* contained in a three-dimensional subspace of \mathbb{R}^d , *or* that have intrinsic dimension at most one. \mathcal{T} is defined to be the smallest such class which is closed under all Boolean operations.

We work in ambient space \mathbb{R}^d

Definition (S: the semialgebraic sets)

A set is *semialgebraic* if it can be defined as a Boolean combination of polynomial inequalities.

Definition (C: the constructible sets)

A set is *constructible* if it can be defined as a Boolean combination of polynomial equalities. i.e., T = Boolean closure of *algebraic* sets.

Definition (\mathcal{T} : the tame sets)

The class \mathcal{T} comprises all semialgebraic sets that are *either* contained in a three-dimensional subspace of \mathbb{R}^d , *or* that have intrinsic dimension at most one. \mathcal{T} is defined to be the smallest such class which is closed under all Boolean operations.

Examples in \mathbb{R}^2 : two line segments

Examples in \mathbb{R}^2 : two line segments

Examples in \mathbb{R}^2 : two line segments

Model checking discrete linear dynamical systems
	arbitrary LDS	diagonalisable LDS
MSO		
piMSO		

	arbitrary LDS	diagonalisable LDS
MSO		
piMSO		

	arbitrary LDS	diagonalisable LDS
MSO	\mathcal{T}	\mathcal{T}
piMSO		

	arbitrary LDS	diagonalisable LDS
MSO	\mathcal{T}	\mathcal{T}
piMSO	$\mathcal{T}\oplus\mathcal{C}$	

	arbitrary LDS	diagonalisable LDS
MSO	\mathcal{T}	\mathcal{T}
piMSO	$\mathcal{T}\oplus\mathcal{C}$	S

- unconditional decidability
- assuming a Skolem oracle

	arbitrary LDS	diagonalisable LDS
MSO	\mathcal{T}	\mathcal{T}
piMSO	$\mathcal{T}\oplus\mathcal{C}$	S

- unconditional decidability
- assuming a Skolem oracle

	arbitrary LDS	diagonalisable LDS
MSO	\mathcal{T} / $\mathcal{T}\oplus\mathcal{C}$	\mathcal{T} / $\mathcal{T}\oplus\mathcal{C}$
piMSO	$\mathcal{T}\oplus\mathcal{C}$	S

- unconditional decidability
- assuming a Skolem oracle

	arbitrary LDS	diagonalisable LDS
MSO	\mathcal{T} / $\mathcal{T}\oplus\mathcal{C}$	\mathcal{T} / $\mathcal{T}\oplus\mathcal{C}$
piMSO	$\mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C}$	S <mark>S</mark>

- unconditional decidability
- assuming a Skolem oracle
- assuming a Positivity oracle

	arbitrary LDS	diagonalisable LDS
MSO	$\mathcal{T} / \mathcal{T} \oplus \mathcal{C}$	$\mathcal{T} / \mathcal{T} \oplus \mathcal{C}$
piMSO	$\mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C}$	S <mark>S</mark>

- unconditional decidability
- assuming a Skolem oracle
- assuming a Positivity oracle

	arbitrary LDS	diagonalisable LDS
MSO	$\mathcal{T} / \mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C}$	\mathcal{T} / $\mathcal{T}\oplus\mathcal{C}$
piMSO	$\mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C}$	S <mark>S</mark>

- unconditional decidability
- assuming a Skolem oracle
- assuming a Positivity oracle

	arbitrary LDS	diagonalisable LDS
MSO	$\mathcal{T} / \mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C}$	$\mathcal{T} / \mathcal{T} \oplus \mathcal{C} / \mathcal{S}$
piMSO	$\mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C}$	S S

- unconditional decidability
- assuming a Skolem oracle
- assuming a Positivity oracle

	arbitrary LDS	diagonalisable LDS
MSO	$\mathcal{T} / \mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C}$	\mathcal{T} / $\mathcal{T}\oplus\mathcal{C}$ / \mathcal{S}
piMSO	$\mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C}$	S <mark>S</mark> S

- unconditional decidability
- assuming a Skolem oracle
- assuming a Positivity oracle

	arbitrary LDS	diagonalisable LDS
MSO	$\mathcal{T} / \mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C}$	\mathcal{T} / $\mathcal{T}\oplus\mathcal{C}$ / \mathcal{S}
piMSO	$\mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C}$	S <mark>S</mark> S

In a precise sense, all these results are *tight:* improving them runs into Skolem-hardness, or Positivity-hardness, or Diophantine-hardness

- unconditional decidability
- assuming a Skolem oracle
- assuming a Positivity oracle

	arbitrary LDS	diagonalisable LDS
MSO	$\mathcal{T} / \mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C}$	\mathcal{T} / $\mathcal{T}\oplus\mathcal{C}$ / \mathcal{S}
piMSO	$\mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C}$	S <mark>S</mark> S

In a precise sense, all these results are *tight:* improving them runs into Skolem-hardness, or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm can produce *correctness certificates!*

Büchi showed in 1962 that MSO is decidable

Büchi showed in 1962 that MSO is decidable

Central Question: what kinds of predicates can we add to MSO whilst retaining decidability?

Büchi showed in 1962 that MSO is decidable

Central Question: what kinds of predicates can we add to MSO whilst retaining decidability?

For example, let $P \subseteq \mathbb{N}$ be the set of prime numbers. Is MSO(P) decidable?? Büchi showed in 1962 that MSO is decidable

Central Question: what kinds of predicates can we add to MSO whilst retaining decidability?

For example, let $P \subseteq \mathbb{N}$ be the set of prime numbers. Is MSO(P) decidable??

This is open! But appears very difficult, e.g.

$$\forall x . \exists y > x . P(y) \land P(y+2)$$

Theorem (Semënov, 1984)

If P is **effectively almost-periodic**, then MSO(P) is decidable.

Theorem (Semënov, 1984)

If P is **effectively almost-periodic**, then MSO(P) is decidable.

A word w is (effectively) almost-periodic if for every finite word u, we can bound the gaps between consecutive occurrences of u in w:

Theorem (Semënov, 1984)

If P is **effectively almost-periodic**, then MSO(P) is decidable.

What about $MSO(P_1, P_2, \ldots, P_k)$?

Theorem (Semënov, 1984)

If P is **effectively almost-periodic**, then MSO(P) is decidable.

What about $MSO(P_1, P_2, \ldots, P_k)$?

Theorem (Semënov, 1983)

One can define P_1 and P_2 both effectively almost-periodic, such that $MSO(P_1, P_2)$ is undecidable!

Theorem (Semënov, 1984)

If P is **effectively almost-periodic**, then MSO(P) is decidable.

What about $MSO(P_1, P_2, \ldots, P_k)$?

Theorem (Semënov, 1983)

One can define P_1 and P_2 both effectively almost-periodic, such that $MSO(P_1, P_2)$ is undecidable!

Much (ongoing) work on this central question! By e.g., Elgot, Rabin, Carton, Thomas, Rabinovich, Fijalkow, Paperman, ...

So how can one ensure that $MSO(P_1, \ldots, P_k)$ is decidable?

So how can one ensure that $MSO(P_1, \ldots, P_k)$ is decidable?

To answer this question in the context of linear dynamical systems, we developed the theory of **(ultimately) toric words**

So how can one ensure that $MSO(P_1, \ldots, P_k)$ is decidable?

To answer this question in the context of linear dynamical systems, we developed the theory of **(ultimately) toric words**

Theorem

- Ultimately toric words are almost-periodic.
- 2 Effectively ultimately toric words are closed under products.

So how can one ensure that $MSO(P_1, \ldots, P_k)$ is decidable?

To answer this question in the context of linear dynamical systems, we developed the theory of **(ultimately) toric words**

Theorem

- Ultimately toric words are almost-periodic.
- 2 Effectively ultimately toric words are closed under products.

Theorem

Tame predicates give rise to effectively ultimately toric words.

So how can one ensure that $MSO(P_1, \ldots, P_k)$ is decidable?

To answer this question in the context of linear dynamical systems, we developed the theory of **(ultimately) toric words**

Theorem

- Ultimately toric words are almost-periodic.
- 2 Effectively ultimately toric words are closed under products.

Theorem

Tame predicates give rise to effectively ultimately toric words.

Corollary

Let (M, s) be a linear dynamical system in ambient space \mathbb{R}^d , and let $S_1, \ldots, S_k \subseteq \mathbb{R}^d$ be tame semialgebraic predicates. Let $P_1, \ldots, P_k \subseteq \mathbb{N}$ be the set of visiting times of the orbit of (M, s) in S_1, \ldots, S_k respectively. Then $MSO(P_1, \ldots, P_k)$ is decidable.

