What's Decidable about Discrete Linear Dynamical Systems?

Joël Ouaknine

Max Planck Institute for Software Systems

Joint work with: Toghrul Karimov, Shaull Almagor, Ventsi Chonev, Edon
Kelmendi, Engel Lefaucheux, Florian Luca, Joris Nieuwveld, David Purser, João
Sousa Pinto, Anton Varonka, Markus Whiteland, James Worrell, ...
Theorietag Automaten und Formale Sprachen
Kaiserslautern, Oktober 2023

Reachability for discrete linear dynamical systems

Ambient space: $\mathbb{R}^{d} \quad\left(\mathbb{R}^{3}\right.$ in this example)
Starting point: $\mathbf{x} \in \mathbb{Q}^{d}$
Linear transformation: $\mathbf{M} \in \mathbb{Q}^{d \times d}$

Reachability for discrete linear dynamical systems

Ambient space: $\mathbb{R}^{d} \quad\left(\mathbb{R}^{3}\right.$ in this example)
Starting point: $\mathbf{x} \in \mathbb{Q}^{d}$
Linear transformation: $\mathbf{M} \in \mathbb{Q}^{d \times d}$

Reachability for discrete linear dynamical systems

Ambient space: $\mathbb{R}^{d} \quad\left(\mathbb{R}^{3}\right.$ in this example)
Starting point: $\mathbf{x} \in \mathbb{Q}^{d}$
Linear transformation: $\mathbf{M} \in \mathbb{Q}^{d \times d}$

Reachability for discrete linear dynamical systems

Ambient space: \mathbb{R}^{d}
 (\mathbb{R}^{3} in this example)

Starting point: $\mathbf{x} \in \mathbb{Q}^{d}$
Linear transformation: $\mathbf{M} \in \mathbb{Q}^{d \times d}$

Reachability for discrete linear dynamical systems

Ambient space: \mathbb{R}^{d}
 (\mathbb{R}^{3} in this example)

Starting point: $\mathbf{x} \in \mathbb{Q}^{d}$
Linear transformation: $\mathbf{M} \in \mathbb{Q}^{d \times d}$

Reachability for discrete linear dynamical systems

Ambient space: \mathbb{R}^{d}
 (\mathbb{R}^{3} in this example)

Starting point: $\mathbf{x} \in \mathbb{Q}^{d}$
Linear transformation: $\mathbf{M} \in \mathbb{Q}^{d \times d}$

Reachability for discrete linear dynamical systems

Ambient space: \mathbb{R}^{d}
 (\mathbb{R}^{3} in this example)

Starting point: $\mathbf{x} \in \mathbb{Q}^{d}$
Linear transformation: $\mathbf{M} \in \mathbb{Q}^{d \times d}$

Reachability for discrete linear dynamical systems

Ambient space: \mathbb{R}^{d}
 (\mathbb{R}^{3} in this example)

Starting point: $\mathbf{x} \in \mathbb{Q}^{d}$
Linear transformation: $\mathbf{M} \in \mathbb{Q}^{d \times d}$

Reachability for discrete linear dynamical systems

Ambient space: \mathbb{R}^{d}
 (\mathbb{R}^{3} in this example)

Starting point: $\mathbf{x} \in \mathbb{Q}^{d}$
Linear transformation: $\mathbf{M} \in \mathbb{Q}^{d \times d}$

Reachability for discrete linear dynamical systems

Ambient space: $\mathbb{R}^{d} \quad\left(\mathbb{R}^{3}\right.$ in this example)
Starting point: $\mathbf{x} \in \mathbb{Q}^{d}$
Linear transformation: $\mathbf{M} \in \mathbb{Q}^{d \times d}$

Reachability for discrete linear dynamical systems

Ambient space: $\mathbb{R}^{d} \quad\left(\mathbb{R}^{3}\right.$ in this example)
Starting point: $\mathbf{x} \in \mathbb{Q}^{d}$
Linear transformation: $\mathbf{M} \in \mathbb{Q}^{d \times d}$

Reachability for discrete linear dynamical systems

Ambient space: $\mathbb{R}^{d} \quad\left(\mathbb{R}^{3}\right.$ in this example)
Starting point: $\mathbf{x} \in \mathbb{Q}^{d}$
Linear transformation: $\mathbf{M} \in \mathbb{Q}^{d \times d}$

Reachability for discrete linear dynamical systems

Ambient space: $\mathbb{R}^{d} \quad\left(\mathbb{R}^{3}\right.$ in this example)
Starting point: $\mathbf{x} \in \mathbb{Q}^{d}$
Linear transformation: $\mathbf{M} \in \mathbb{Q}^{d \times d}$

Reachability for discrete linear dynamical systems

Ambient space: $\mathbb{R}^{d} \quad\left(\mathbb{R}^{3}\right.$ in this example)
Starting point: $\mathbf{x} \in \mathbb{Q}^{d}$
Linear transformation: $\mathbf{M} \in \mathbb{Q}^{d \times d}$

Reachability for discrete linear dynamical systems

Ambient space: $\mathbb{R}^{d} \quad\left(\mathbb{R}^{3}\right.$ in this example)
Starting point: $\mathbf{x} \in \mathbb{Q}^{d}$
Linear transformation: $\mathbf{M} \in \mathbb{Q}^{d \times d}$

Reachability for discrete linear dynamical systems

Ambient space: $\mathbb{R}^{d} \quad\left(\mathbb{R}^{3}\right.$ in this example)
Starting point: $\mathbf{x} \in \mathbb{Q}^{d}$
Linear transformation: $\mathbf{M} \in \mathbb{Q}^{d \times d}$

Reachability for discrete linear dynamical systems

Ambient space: $\mathbb{R}^{d} \quad\left(\mathbb{R}^{3}\right.$ in this example)
Starting point: $\mathbf{x} \in \mathbb{Q}^{d}$
Linear transformation: $\mathbf{M} \in \mathbb{Q}^{d \times d}$

Reachability for discrete linear dynamical systems

Ambient space: $\mathbb{R}^{d} \quad\left(\mathbb{R}^{3}\right.$ in this example)
Starting point: $\mathbf{x} \in \mathbb{Q}^{d}$
Linear transformation: $\mathbf{M} \in \mathbb{Q}^{d \times d}$

Reachability for discrete linear dynamical systems

Ambient space: $\mathbb{R}^{d} \quad\left(\mathbb{R}^{3}\right.$ in this example)
Starting point: $\mathbf{x} \in \mathbb{Q}^{d}$
Linear transformation: $\mathbf{M} \in \mathbb{Q}^{d \times d}$

Reachability for discrete linear dynamical systems

Ambient space: $\mathbb{R}^{d} \quad\left(\mathbb{R}^{3}\right.$ in this example)
Starting point: $\mathbf{x} \in \mathbb{Q}^{d}$
Linear transformation: $\mathbf{M} \in \mathbb{Q}^{d \times d}$

Reachability for discrete linear dynamical systems

Ambient space: $\mathbb{R}^{d} \quad\left(\mathbb{R}^{3}\right.$ in this example)
Starting point: $\mathbf{x} \in \mathbb{Q}^{d}$
Linear transformation: $\mathbf{M} \in \mathbb{Q}^{d \times d}$

Semialgebraic partitions

Partition \mathbb{R}^{d} into

Semialgebraic partitions

$$
\text { Partition } \mathbb{R}^{d} \text { into } S_{1}
$$

Semialgebraic partitions

$$
\text { Partition } \mathbb{R}^{d} \text { into } S_{1}, S_{2}
$$

Semialgebraic partitions

$$
\text { Partition } \mathbb{R}^{d} \text { into } S_{1}, S_{2}, S_{3}
$$

Semialgebraic partitions

Partition \mathbb{R}^{d} into $S_{1}, S_{2}, S_{3}, S_{4}$

Semialgebraic partitions

$$
\text { Partition } \mathbb{R}^{\boldsymbol{d}} \text { into } S_{1}, S_{2}, S_{3}, S_{4}
$$

Semialgebraic partitions

$$
\text { Partition } \mathbb{R}^{\boldsymbol{d}} \text { into } S_{1}, S_{2}, S_{3}, S_{4}
$$

Semialgebraic partitions

Partition $\mathbb{R}^{\boldsymbol{d}}$ into $S_{1}, S_{2}, S_{3}, S_{4}$

Semialgebraic partitions

Partition $\mathbb{R}^{\boldsymbol{d}}$ into $S_{1}, S_{2}, S_{3}, S_{4}$

Semialgebraic partitions

Partition $\mathbb{R}^{\boldsymbol{d}}$ into $S_{1}, S_{2}, S_{3}, S_{4}$

Semialgebraic partitions

Partition $\mathbb{R}^{\boldsymbol{d}}$ into $S_{1}, S_{2}, S_{3}, S_{4}$

Semialgebraic partitions

Partition $\mathbb{R}^{\boldsymbol{d}}$ into $S_{1}, S_{2}, S_{3}, S_{4}$

Semialgebraic partitions

Partition $\mathbb{R}^{\boldsymbol{d}}$ into $S_{1}, S_{2}, S_{3}, S_{4}$

Semialgebraic partitions

$$
\text { Partition } \mathbb{R}^{d} \text { into } S_{1}, S_{2}, S_{3}, S_{4}
$$

Semialgebraic partitions

Partition $\mathbb{R}^{\boldsymbol{d}}$ into $S_{1}, S_{2}, S_{3}, S_{4}$

Semialgebraic partitions

Partition \mathbb{R}^{d} into $S_{1}, S_{2}, S_{3}, S_{4}$

Semialgebraic partitions

$$
\text { Partition } \mathbb{R}^{d} \text { into } S_{1}, S_{2}, S_{3}, S_{4}
$$

Semialgebraic partitions

$$
\text { Partition } \mathbb{R}^{d} \text { into } S_{1}, S_{2}, S_{3}, S_{4}
$$

$$
w=0
$$

Semialgebraic partitions

$$
\text { Partition } \mathbb{R}^{d} \text { into } S_{1}, S_{2}, S_{3}, S_{4}
$$

$$
w=0
$$

Semialgebraic partitions

$$
\text { Partition } \mathbb{R}^{d} \text { into } S_{1}, S_{2}, S_{3}, S_{4}
$$

$$
w=0
$$

Semialgebraic partitions

$$
\text { Partition } \mathbb{R}^{\boldsymbol{d}} \text { into } S_{1}, S_{2}, S_{3}, S_{4}
$$

$$
w=0
$$

Semialgebraic partitions

$$
\text { Partition } \mathbb{R}^{\boldsymbol{d}} \text { into } S_{1}, S_{2}, S_{3}, S_{4}
$$

Semialgebraic partitions

$$
\text { Partition } \mathbb{R}^{\boldsymbol{d}} \text { into } S_{1}, S_{2}, S_{3}, S_{4}
$$

Semialgebraic partitions

$$
\text { Partition } \mathbb{R}^{d} \text { into } S_{1}, S_{2}, S_{3}, S_{4}
$$

$$
w=00 \bigcirc 00
$$

Semialgebraic partitions

$$
\text { Partition } \mathbb{R}^{d} \text { into } S_{1}, S_{2}, S_{3}, S_{4}
$$

$$
w=00000
$$

Semialgebraic partitions

$$
\text { Partition } \mathbb{R}^{d} \text { into } S_{1}, S_{2}, S_{3}, S_{4}
$$

$$
w=0 \bigcirc 0 \bigcirc 000
$$

Semialgebraic partitions

$$
\text { Partition } \mathbb{R}^{d} \text { into } S_{1}, S_{2}, S_{3}, S_{4}
$$

$$
w=\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet
$$

Semialgebraic partitions

$$
\text { Partition } \mathbb{R}^{d} \text { into } S_{1}, S_{2}, S_{3}, S_{4}
$$

Semialgebraic partitions

Partition \mathbb{R}^{d} into $S_{1}, S_{2}, S_{3}, S_{4}$

Semialgebraic partitions

Partition \mathbb{R}^{d} into $S_{1}, S_{2}, S_{3}, S_{4}$

Semialgebraic partitions

Partition \mathbb{R}^{d} into $S_{1}, S_{2}, S_{3}, S_{4}$

Semialgebraic partitions

Partition \mathbb{R}^{d} into $S_{1}, S_{2}, S_{3}, S_{4}$

Semialgebraic partitions

Partition \mathbb{R}^{d} into $S_{1}, S_{2}, S_{3}, S_{4}$

Semialgebraic partitions

Partition \mathbb{R}^{d} into $S_{1}, S_{2}, S_{3}, S_{4}$

Semialgebraic partitions

Partition \mathbb{R}^{d} into $S_{1}, S_{2}, S_{3}, S_{4}$

Model checking discrete linear dynamical systems

$w=\bigcirc \bigcirc \bigcirc$ generated by (M, s)

Model checking discrete linear dynamical systems

$w=\bigcirc \bigcirc \bigcirc$ generated by (M, s)

```
The Model-Checking Problem:
Given \(\mathcal{W}\) and a specification \(\varphi\), decide if \(\mathcal{W} \vDash \varphi\)
```


Model checking discrete linear dynamical systems

$$
\begin{aligned}
& w=\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\
& \text { generated by }(M, s)
\end{aligned}
$$

```
The Model-Checking Problem:
Given \mathcal{W}}\mathrm{ and a specification }\varphi\mathrm{ , decide if }\mathcal{W}\vDash
```

- Deciding ω-Regular Properties on Linear Recurrence Sequences Almagor, Karimov, Kelmendi, O., Worrell, in POPL 2021
- What's Decidable about Linear Loops?

Karimov, Lefaucheux, O., Purser, Varonka, Whiteland, Worrell, in POPL 2022

- The Power of Positivity

Karimov, Kelmendi, Nieuwveld, O., Worrell, in LICS 2023

- What's Decidable about Discrete Linear Dynamical Systems?

Karimov, Kelmendi, O., Worrell, in Henzinger Festschrift 2023

Model checking discrete linear dynamical systems

$w=\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ generated by (M, s)

```
The Model-Checking Problem:
Given \(\mathcal{W}\) and a specification \(\varphi\), decide if \(\mathcal{W} \vDash \varphi\)
```

We consider:

Model checking discrete linear dynamical systems

$w=\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ generated by (M, s)

```
The Model-Checking Problem:
Given \(\mathcal{W}\) and a specification \(\varphi\), decide if \(\mathcal{W} \vDash \varphi\)
```

We consider:

- Two different kinds of linear dynamical systems (M, s):

Model checking discrete linear dynamical systems

$w=\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ generated by (M, s)

```
The Model-Checking Problem:
Given \mathcal{W}}\mathrm{ and a specification }\varphi\mathrm{ , decide if }\mathcal{W}\vDash
```

We consider:

- Two different kinds of linear dynamical systems (M, s):
- arbitrary linear dynamical systems

Model checking discrete linear dynamical systems

$w=\bigcirc \bigcirc \bigcirc$ generated by (M, s)

```
The Model-Checking Problem:
Given \mathcal{W}}\mathrm{ and a specification }\varphi\mathrm{ , decide if }\mathcal{W}\vDash
```

We consider:

- Two different kinds of linear dynamical systems (M, s):
- arbitrary linear dynamical systems
- diagonalisable linear dynamical systems

Model checking discrete linear dynamical systems

 generated by (M, s)

```
The Model-Checking Problem:
Given \mathcal{W}}\mathrm{ and a specification }\varphi\mathrm{ , decide if }\mathcal{W}\vDash
```

We consider:

- Two different kinds of linear dynamical systems (M, s):
- arbitrary linear dynamical systems
- diagonalisable linear dynamical systems
- Two different kinds of specification formalisms:

Model checking discrete linear dynamical systems

 generated by (M, s)

```
The Model-Checking Problem:
Given \mathcal{W}}\mathrm{ and a specification }\varphi\mathrm{ , decide if }\mathcal{W}\vDash
```

We consider:

- Two different kinds of linear dynamical systems (M, s):
- arbitrary linear dynamical systems
- diagonalisable linear dynamical systems
- Two different kinds of specification formalisms:
- arbitrary MSO (fancy version of LTL)

Model checking discrete linear dynamical systems

 generated by (M, s)

```
The Model-Checking Problem:
Given \mathcal{W}}\mathrm{ and a specification }\varphi\mathrm{ , decide if }\mathcal{W}\vDash
```

We consider:

- Two different kinds of linear dynamical systems (M, s):
- arbitrary linear dynamical systems
- diagonalisable linear dynamical systems
- Two different kinds of specification formalisms:
- arbitrary MSO (fancy version of LTL)
- prefix-independent MSO (denoted piMSO)

Model checking discrete linear dynamical systems

 generated by (M, s)

```
The Model-Checking Problem:
Given \mathcal{W}}\mathrm{ and a specification }\varphi\mathrm{ , decide if }\mathcal{W}\vDash
```

We consider:

- Two different kinds of linear dynamical systems (M, s):
- arbitrary linear dynamical systems
- diagonalisable linear dynamical systems
- Two different kinds of specification formalisms:
- arbitrary MSO (fancy version of LTL)
- prefix-independent MSO (denoted piMSO)
- Several different classes of semialgebraic predicates

Model checking discrete linear dynamical systems

$$
w=\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc
$$

generated by (M, s)

```
The Model-Checking Problem:
Given \mathcal{W}}\mathrm{ and a specification }\varphi\mathrm{ , decide if }\mathcal{W}\vDash
```

We consider:

- Two different kinds of linear dynamical systems (M, s):
- arbitrary linear dynamical systems
- diagonalisable linear dynamical systems
- Two different kinds of specification formalisms:
- arbitrary MSO (fancy version of LTL)
- prefix-independent MSO (denoted piMSO)
- Several different classes of semialgebraic predicates
- The use (or not) of Skolem and/or Positivity oracles

Quiz time! Prefix-independence

Which of the following specs are prefix-independent?

Quiz time! Prefix-independence

Which of the following specs are prefix-independent?
(1) SKOLEM: $\mathbf{F H}$

Quiz time! Prefix-independence

Which of the following specs are prefix-independent?
(1) SKOLEM: $\mathbf{F} H$
(2) POSITIVITY: G H^{+}

Quiz time! Prefix-independence

Which of the following specs are prefix-independent?
(1) SKOLEM: $\mathbf{F} H$
(2) POSITIVITY: G H^{+}
(3) Ultimate positivity: $\mathbf{F G G} H^{+}$

Quiz time! Prefix-independence

Which of the following specs are prefix-independent?
(1) SKOLEM: $\mathbf{F} H$
(2) Positivity: $\mathbf{G} H^{+}$
(3) ultimate positivity: $\mathbf{F G G} \mathrm{H}^{+}$
(9) Infinite RECURRENCE: G F P

Quiz time! Prefix-independence

Which of the following specs are prefix-independent?
(1) SkOLEM: $\mathbf{F} H$
(2) POSITIVITY: G H^{+}
(3) ultimate positivity: F G H^{+}
(9) Infinite RECURRENCE: G F P

Only (3) and (4)

MSO — Monadic Second-Order logic (of order)

- The domain is the set of natural numbers \mathbb{N}

MSO — Monadic Second-Order logic (of order)

- The domain is the set of natural numbers \mathbb{N}
- You are given a finite collection of monadic predicates (P, Q, R, \ldots)

MSO — Monadic Second-Order logic (of order)

- The domain is the set of natural numbers \mathbb{N}
- You are given a finite collection of monadic predicates (P, Q, R, \ldots)
- You can use any integer, and expressions such as "+2"

MSO — Monadic Second-Order logic (of order)

- The domain is the set of natural numbers \mathbb{N}
- You are given a finite collection of monadic predicates (P, Q, R, \ldots)
- You can use any integer, and expressions such as "+2"
- You are allowed to use " $=$ " and " $<$ " between integers

MSO - Monadic Second-Order logic (of order)

- The domain is the set of natural numbers \mathbb{N}
- You are given a finite collection of monadic predicates (P, Q, R, \ldots)
- You can use any integer, and expressions such as "+2"
- You are allowed to use " $=$ " and " $<$ " between integers
- You can use both first-order variables (x, y, z, \ldots) and second-order monadic variables (X, Y, Z, \ldots)

MSO - Monadic Second-Order logic (of order)

- The domain is the set of natural numbers \mathbb{N}
- You are given a finite collection of monadic predicates (P, Q, R, \ldots)
- You can use any integer, and expressions such as "+2"
- You are allowed to use " $=$ " and " $<$ " between integers
- You can use both first-order variables (x, y, z, \ldots) and second-order monadic variables (X, Y, Z, \ldots)
- You can then write " $X(y)$ " or " $y \in X$ " (same with P etc.)

MSO - Monadic Second-Order logic (of order)

- The domain is the set of natural numbers \mathbb{N}
- You are given a finite collection of monadic predicates (P, Q, R, \ldots)
- You can use any integer, and expressions such as " +2 "
- You are allowed to use " $=$ " and " $<$ " between integers
- You can use both first-order variables (x, y, z, \ldots) and second-order monadic variables (X, Y, Z, \ldots)
- You can then write " $X(y)$ " or " $y \in X$ " (same with P etc.)
- You are allowed first- and second-order quantifiers, and all Boolean connectives

MSO - Monadic Second-Order logic (of order)

- The domain is the set of natural numbers \mathbb{N}
- You are given a finite collection of monadic predicates (P, Q, R, \ldots)
- You can use any integer, and expressions such as " +2 "
- You are allowed to use " $=$ " and " $<$ " between integers
- You can use both first-order variables (x, y, z, \ldots) and second-order monadic variables (X, Y, Z, \ldots)
- You can then write " $X(y)$ " or " $y \in X$ " (same with P etc.)
- You are allowed first- and second-order quantifiers, and all Boolean connectives
Example: express "P eventually contains all even integers"

MSO - Monadic Second-Order logic (of order)

- The domain is the set of natural numbers \mathbb{N}
- You are given a finite collection of monadic predicates (P, Q, R, \ldots)
- You can use any integer, and expressions such as "+2"
- You are allowed to use " $=$ " and " $<$ " between integers
- You can use both first-order variables (x, y, z, \ldots) and second-order monadic variables (X, Y, Z, \ldots)
- You can then write " $X(y)$ " or " $y \in X$ " (same with P etc.)
- You are allowed first- and second-order quantifiers, and all Boolean connectives
Example: express " P eventually contains all even integers"

$$
\begin{gathered}
\exists X .0 \in X \wedge 1 \notin X \wedge \forall x .(x \in X \leftrightarrow x+2 \in X) \wedge \\
\exists y . \forall z>y . z \in X \rightarrow z \in P
\end{gathered}
$$

MSO - Monadic Second-Order logic (of order)

- The domain is the set of natural numbers \mathbb{N}
- You are given a finite collection of monadic predicates (P, Q, R, \ldots)
- You can use any integer, and expressions such as "+2"
- You are allowed to use " $=$ " and " $<$ " between integers
- You can use both first-order variables (x, y, z, \ldots) and second-order monadic variables (X, Y, Z, \ldots)
- You can then write " $X(y)$ " or " $y \in X$ " (same with P etc.)
- You are allowed first- and second-order quantifiers, and all Boolean connectives
Example: express " P eventually contains all even integers"

$$
\begin{gathered}
\exists X .0 \in X \wedge 1 \notin X \wedge \forall x .(x \in X \leftrightarrow x+2 \in X) \wedge \\
\exists y . \forall z>y . z \in X \rightarrow z \in P
\end{gathered}
$$

Question: Is this specification prefix-independent?

MSO - Monadic Second-Order logic (of order)

- The domain is the set of natural numbers \mathbb{N}
- You are given a finite collection of monadic predicates (P, Q, R, \ldots)
- You can use any integer, and expressions such as "+2"
- You are allowed to use " $=$ " and " $<$ " between integers
- You can use both first-order variables (x, y, z, \ldots) and second-order monadic variables (X, Y, Z, \ldots)
- You can then write " $X(y)$ " or " $y \in X$ " (same with P etc.)
- You are allowed first- and second-order quantifiers, and all Boolean connectives
Example: express " P eventually contains all even integers"

$$
\begin{gathered}
\exists X .0 \in X \wedge 1 \notin X \wedge \forall x .(x \in X \leftrightarrow x+2 \in X) \wedge \\
\exists y . \forall z>y . z \in X \rightarrow z \in P
\end{gathered}
$$

Question: Is this specification prefix-independent?
NO!

Classes of semialgebraic predicates

We work in ambient space \mathbb{R}^{d}

Classes of semialgebraic predicates

We work in ambient space \mathbb{R}^{d}
Definition (\mathcal{S} : the semialgebraic sets)
A set is semialgebraic if it can be defined as a Boolean combination of polynomial inequalities.

Classes of semialgebraic predicates

We work in ambient space \mathbb{R}^{d}
Definition (\mathcal{S} : the semialgebraic sets)
A set is semialgebraic if it can be defined as a Boolean combination of polynomial inequalities.

Classes of semialgebraic predicates

We work in ambient space \mathbb{R}^{d}

Definition (\mathcal{S} : the semialgebraic sets)

A set is semialgebraic if it can be defined as a Boolean combination of polynomial inequalities.

Definition (\mathcal{C} : the constructible sets)

A set is constructible if it can be defined as a Boolean combination of polynomial equalities.
i.e., $\mathcal{T}=$ Boolean closure of algebraic sets.

Classes of semialgebraic predicates

We work in ambient space \mathbb{R}^{d}

Definition (\mathcal{S} : the semialgebraic sets)

A set is semialgebraic if it can be defined as a Boolean combination of polynomial inequalities.

Definition (\mathcal{C} : the constructible sets)

A set is constructible if it can be defined as a Boolean combination of polynomial equalities. i.e., $\mathcal{T}=$ Boolean closure of algebraic sets.

Classes of semialgebraic predicates

We work in ambient space \mathbb{R}^{d}

Definition (\mathcal{S} : the semialgebraic sets)

A set is semialgebraic if it can be defined as a Boolean combination of polynomial inequalities.

Definition (\mathcal{C} : the constructible sets)

A set is constructible if it can be defined as a Boolean combination of polynomial equalities. i.e., $\mathcal{T}=$ Boolean closure of algebraic sets.

Definition (\mathcal{T} : the tame sets)

The class \mathcal{T} comprises all semialgebraic sets that are either contained in a three-dimensional subspace of \mathbb{R}^{d}, or that have intrinsic dimension at most one. \mathcal{T} is defined to be the smallest such class which is closed under all Boolean operations.

Classes of semialgebraic predicates

We work in ambient space \mathbb{R}^{d}

Definition (\mathcal{S} : the semialgebraic sets)

A set is semialgebraic if it can be defined as a Boolean combination of polynomial inequalities.

Definition (\mathcal{C} : the constructible sets)

A set is constructible if it can be defined as a Boolean combination of polynomial equalities. i.e., $\mathcal{T}=$ Boolean closure of algebraic sets.

Definition (\mathcal{T} : the tame sets)

The class \mathcal{T} comprises all semialgebraic sets that are either contained in a three-dimensional subspace of \mathbb{R}^{d}, or that have intrinsic dimension at most one. \mathcal{T} is defined to be the smallest such
 class which is closed under all Boolean operations.

Examples in \mathbb{R}^{2} : two line segments

Examples in \mathbb{R}^{2} : two line segments

Examples in \mathbb{R}^{2} : two line segments

Examples in $\mathbb{R}^{3}, \mathbb{R}^{4}$, and \mathbb{R}^{5}

Examples in $\mathbb{R}^{3}, \mathbb{R}^{4}$, and \mathbb{R}^{5}

Kannan-Lipton "Orbit Problem" (1980s)
decidable (PTIME)

Kannan-Lipton "Orbit Problem" (1980s)

Kannan-Lipton "Orbit Problem" (1980s)

Examples in $\mathbb{R}^{3}, \mathbb{R}^{4}$, and \mathbb{R}^{5}

Kannan-Lipton "Orbit Problem" (1980s)
decidable (PTIME)

Classes of predicates: summary

Model checking discrete linear dynamical systems

	arbitrary LDS	diagonalisable LDS
MSO		
piMSO		

Model checking discrete linear dynamical systems

- unconditional decidability

	arbitrary LDS	diagonalisable LDS
MSO		
piMSO		

Model checking discrete linear dynamical systems

- unconditional decidability

	arbitrary LDS	diagonalisable LDS
MSO	\mathcal{T}	\mathcal{T}
piMSO		

Model checking discrete linear dynamical systems

- unconditional decidability

	arbitrary LDS	diagonalisable LDS
MSO	\mathcal{T}	\mathcal{T}
piMSO	$\mathcal{T} \oplus \mathcal{C}$	

Model checking discrete linear dynamical systems

- unconditional decidability

	arbitrary LDS	diagonalisable LDS
MSO	\mathcal{T}	\mathcal{T}
piMSO	$\mathcal{T} \oplus \mathcal{C}$	\mathcal{S}

Model checking discrete linear dynamical systems

- unconditional decidability
- assuming a Skolem oracle

	arbitrary LDS	diagonalisable LDS
MSO	\mathcal{T}	\mathcal{T}
piMSO	$\mathcal{T} \oplus \mathcal{C}$	\mathcal{S}

Model checking discrete linear dynamical systems

- unconditional decidability
- assuming a Skolem oracle

	arbitrary LDS	diagonalisable LDS
MSO	$\mathcal{T} / \mathcal{T} \oplus \mathcal{C}$	$\mathcal{T} / \mathcal{T} \oplus \mathcal{C}$
piMSO	$\mathcal{T} \oplus \mathcal{C}$	\mathcal{S}

Model checking discrete linear dynamical systems

- unconditional decidability
- assuming a Skolem oracle

	arbitrary LDS	diagonalisable LDS
MSO	$\mathcal{T} / \mathcal{T} \oplus \mathcal{C}$	$\mathcal{T} / \mathcal{T} \oplus \mathcal{C}$
piMSO	$\mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C}$	$\mathcal{S} / \mathcal{S}$

Model checking discrete linear dynamical systems

- unconditional decidability
- assuming a Skolem oracle
- assuming a Positivity oracle

	arbitrary LDS	diagonalisable LDS
MSO	$\mathcal{T} / \mathcal{T} \oplus \mathcal{C}$	$\mathcal{T} / \mathcal{T} \oplus \mathcal{C}$
piMSO	$\mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C}$	$\mathcal{S} / \mathcal{S}$

Model checking discrete linear dynamical systems

- unconditional decidability
- assuming a Skolem oracle
- assuming a Positivity oracle

	arbitrary LDS	diagonalisable LDS
MSO	$\mathcal{T} / \mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C}$	$\mathcal{T} / \mathcal{T} \oplus \mathcal{C}$
piMSO	$\mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C}$	$\mathcal{S} / \mathcal{S}$

Model checking discrete linear dynamical systems

- unconditional decidability
- assuming a Skolem oracle
- assuming a Positivity oracle

	arbitrary LDS	diagonalisable LDS
MSO	$\mathcal{T} / \mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C}$	$\mathcal{T} / \mathcal{T} \oplus \mathcal{C} / \mathcal{S}$
piMSO	$\mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C}$	$\mathcal{S} / \mathcal{S}$

Model checking discrete linear dynamical systems

- unconditional decidability
- assuming a Skolem oracle
- assuming a Positivity oracle

	arbitrary LDS	diagonalisable LDS
MSO	$\mathcal{T} / \mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C}$	$\mathcal{T} / \mathcal{T} \oplus \mathcal{C} / \mathcal{S}$
piMSO	$\mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C}$	$\mathcal{S} / \mathcal{S} / \mathcal{S}$

Model checking discrete linear dynamical systems

- unconditional decidability
- assuming a Skolem oracle
- assuming a Positivity oracle

	arbitrary LDS	diagonalisable LDS
MSO	$\mathcal{T} / \mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C}$	$\mathcal{T} / \mathcal{T} \oplus \mathcal{C} / \mathcal{S}$
piMSO	$\mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C}$	$\mathcal{S} / \mathcal{S} / \mathcal{S}$

In a precise sense, all these results are tight: improving them runs into Skolem-hardness, or Positivity-hardness, or Diophantine-hardness

Model checking discrete linear dynamical systems

- unconditional decidability
- assuming a Skolem oracle
- assuming a Positivity oracle

	arbitrary LDS	diagonalisable LDS
MSO	$\mathcal{T} / \mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C}$	$\mathcal{T} / \mathcal{T} \oplus \mathcal{C} / \mathcal{S}$
piMSO	$\mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C} / \mathcal{T} \oplus \mathcal{C}$	$\mathcal{S} / \mathcal{S} / \mathcal{S}$

In a precise sense, all these results are tight: improving them runs into Skolem-hardness, or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm can produce correctness certificates!

Decidability of MSO and extensions

Büchi showed in 1962 that MSO is decidable

Decidability of MSO and extensions

Büchi showed in 1962 that MSO is decidable

Central Question: what kinds of predicates can we add to MSO whilst retaining decidability?

Decidability of MSO and extensions

Büchi showed in 1962 that MSO is decidable

Central Question: what kinds of predicates can we add to MSO whilst retaining decidability?

For example, let $P \subseteq \mathbb{N}$ be the set of prime numbers.
Is $\mathrm{MSO}(P)$ decidable??

Decidability of MSO and extensions

Büchi showed in 1962 that MSO is decidable

Central Question: what kinds of predicates can we add to MSO whilst retaining decidability?

For example, let $P \subseteq \mathbb{N}$ be the set of prime numbers.
Is $\mathrm{MSO}(P)$ decidable??
This is open! But appears very difficult, e.g.

$$
\forall x . \exists y>x . P(y) \wedge P(y+2)
$$

Decidability of MSO and extensions

Theorem (Semënov, 1984)
If P is effectively almost-periodic, then $M S O(P)$ is decidable.

Decidability of MSO and extensions

Theorem (Semënov, 1984)
If P is effectively almost-periodic, then $M S O(P)$ is decidable.

A word w is (effectively) almost-periodic if for every finite word u, we can bound the gaps between consecutive occurrences of u in w :

Decidability of MSO and extensions

Theorem (Semënov, 1984)
If P is effectively almost-periodic, then $M S O(P)$ is decidable.

What about $\operatorname{MSO}\left(P_{1}, P_{2}, \ldots, P_{k}\right)$?

Decidability of MSO and extensions

Theorem (Semënov, 1984)
If P is effectively almost-periodic, then $M S O(P)$ is decidable.

What about $\operatorname{MSO}\left(P_{1}, P_{2}, \ldots, P_{k}\right)$?

Theorem (Semënov, 1983)

One can define P_{1} and P_{2} both effectively almost-periodic, such that $\operatorname{MSO}\left(P_{1}, P_{2}\right)$ is undecidable!

Decidability of MSO and extensions

Theorem (Semënov, 1984)

If P is effectively almost-periodic, then $M S O(P)$ is decidable.

What about $\operatorname{MSO}\left(P_{1}, P_{2}, \ldots, P_{k}\right)$?

Theorem (Semënov, 1983)

One can define P_{1} and P_{2} both effectively almost-periodic, such that $\operatorname{MSO}\left(P_{1}, P_{2}\right)$ is undecidable!

Much (ongoing) work on this central question! By e.g., Elgot, Rabin, Carton, Thomas, Rabinovich, Fijalkow, Paperman, ...

Toric words
So how can one ensure that $\operatorname{MSO}\left(P_{1}, \ldots, P_{k}\right)$ is decidable?

So how can one ensure that $\operatorname{MSO}\left(P_{1}, \ldots, P_{k}\right)$ is decidable?
To answer this question in the context of linear dynamical systems, we developed the theory of (ultimately) toric words

Toric words

So how can one ensure that $\operatorname{MSO}\left(P_{1}, \ldots, P_{k}\right)$ is decidable?
To answer this question in the context of linear dynamical systems, we developed the theory of (ultimately) toric words

Theorem

(1) Ultimately toric words are almost-periodic.
(2) Effectively ultimately toric words are closed under products.

Toric words

So how can one ensure that $\operatorname{MSO}\left(P_{1}, \ldots, P_{k}\right)$ is decidable?
To answer this question in the context of linear dynamical systems, we developed the theory of (ultimately) toric words

Theorem

(1) Ultimately toric words are almost-periodic.
(2) Effectively ultimately toric words are closed under products.

Theorem

Tame predicates give rise to effectively ultimately toric words.

Toric words

So how can one ensure that $\operatorname{MSO}\left(P_{1}, \ldots, P_{k}\right)$ is decidable?
To answer this question in the context of linear dynamical systems, we developed the theory of (ultimately) toric words

Theorem

(1) Ultimately toric words are almost-periodic.
(2) Effectively ultimately toric words are closed under products.

Theorem

Tame predicates give rise to effectively ultimately toric words.

Corollary

Let (M, s) be a linear dynamical system in ambient space \mathbb{R}^{d}, and let $S_{1}, \ldots, S_{k} \subseteq \mathbb{R}^{d}$ be tame semialgebraic predicates.
Let $P_{1}, \ldots, P_{k} \subseteq \mathbb{N}$ be the set of visiting times of the orbit of (M, s) in S_{1}, \ldots, S_{k} respectively.
Then $\operatorname{MSO}\left(P_{1}, \ldots, P_{k}\right)$ is decidable.

The Algorithmic Theory of Linear Systems

The Algorithmic Theory of Linear Systems

The Algorithmic Theory of Linear Systems

The Algorithmic Theory of Linear Systems

The Algorithmic Theory of Linear Systems

The Algorithmic Theory of Linear Systems

The Algorithmic Theory of Linear Systems

The Algorithmic Theory of Linear Systems

The Algorithmic Theory of Linear Systems

The Algorithmic Theory of Linear Systems

The Algorithmic Theory of Linear Systems

The Algorithmic Theory of Linear Systems

