
What’s Decidable about
Discrete Linear Dynamical Systems?

Joël Ouaknine

Max Planck Institute for Software Systems

Joint work with: Toghrul Karimov, Shaull Almagor, Ventsi Chonev, Edon
Kelmendi, Engel Lefaucheux, Florian Luca, Joris Nieuwveld, David Purser, João

Sousa Pinto, Anton Varonka, Markus Whiteland, James Worrell, . . .

Theorietag Automaten und Formale Sprachen
Kaiserslautern, Oktober 2023

Reachability for discrete linear dynamical systems

Ambient space: Rd (R3 in this example)
Starting point: x ∈ Qd

Linear transformation: M ∈ Qd×d

Reachability for discrete linear dynamical systems

Ambient space: Rd (R3 in this example)
Starting point: x ∈ Qd

Linear transformation: M ∈ Qd×d

Reachability for discrete linear dynamical systems

Ambient space: Rd (R3 in this example)
Starting point: x ∈ Qd

Linear transformation: M ∈ Qd×d

x

Reachability for discrete linear dynamical systems

Ambient space: Rd (R3 in this example)
Starting point: x ∈ Qd

Linear transformation: M ∈ Qd×d

x

Reachability for discrete linear dynamical systems

Ambient space: Rd (R3 in this example)
Starting point: x ∈ Qd

Linear transformation: M ∈ Qd×d

x

Mx

Reachability for discrete linear dynamical systems

Ambient space: Rd (R3 in this example)
Starting point: x ∈ Qd

Linear transformation: M ∈ Qd×d

x

Mx

Reachability for discrete linear dynamical systems

Ambient space: Rd (R3 in this example)
Starting point: x ∈ Qd

Linear transformation: M ∈ Qd×d

2
x

x

M
Mx

Reachability for discrete linear dynamical systems

Ambient space: Rd (R3 in this example)
Starting point: x ∈ Qd

Linear transformation: M ∈ Qd×d

2
x

x

M
Mx

Reachability for discrete linear dynamical systems

Ambient space: Rd (R3 in this example)
Starting point: x ∈ Qd

Linear transformation: M ∈ Qd×d

2
x

x

M
Mx

Reachability for discrete linear dynamical systems

Ambient space: Rd (R3 in this example)
Starting point: x ∈ Qd

Linear transformation: M ∈ Qd×d

2
x

x

M
Mx

Reachability for discrete linear dynamical systems

Ambient space: Rd (R3 in this example)
Starting point: x ∈ Qd

Linear transformation: M ∈ Qd×d

2
x

x

M
Mx

Reachability for discrete linear dynamical systems

Ambient space: Rd (R3 in this example)
Starting point: x ∈ Qd

Linear transformation: M ∈ Qd×d

2
x

x

M
Mx

Reachability for discrete linear dynamical systems

Ambient space: Rd (R3 in this example)
Starting point: x ∈ Qd

Linear transformation: M ∈ Qd×d

2
x

Mx
M

x

Reachability for discrete linear dynamical systems

Ambient space: Rd (R3 in this example)
Starting point: x ∈ Qd

Linear transformation: M ∈ Qd×d

2
x

P

M

x

Mx

Reachability for discrete linear dynamical systems

Ambient space: Rd (R3 in this example)
Starting point: x ∈ Qd

Linear transformation: M ∈ Qd×d

2
x

P

M

x

Mx

Kannan−Lipton "Orbit Problem" (1980s)
decidable (PTIME)

Reachability for discrete linear dynamical systems

Ambient space: Rd (R3 in this example)
Starting point: x ∈ Qd

Linear transformation: M ∈ Qd×d

x

P

2
M

x

Mx

Kannan−Lipton "Orbit Problem" (1980s)
decidable (PTIME)

Reachability for discrete linear dynamical systems

Ambient space: Rd (R3 in this example)
Starting point: x ∈ Qd

Linear transformation: M ∈ Qd×d

x

P

2
M

x

Mx

Kannan−Lipton "Orbit Problem" (1980s)
decidable (PTIME)

H

Reachability for discrete linear dynamical systems

Ambient space: Rd (R3 in this example)
Starting point: x ∈ Qd

Linear transformation: M ∈ Qd×d

x

P

2
M

x

Mx

Kannan−Lipton "Orbit Problem" (1980s)
decidable (PTIME)

H

Skolem Problem (1930s)

Reachability for discrete linear dynamical systems

Ambient space: Rd (R3 in this example)
Starting point: x ∈ Qd

Linear transformation: M ∈ Qd×d

x

P

2
M

u

x

Mx

Kannan−Lipton "Orbit Problem" (1980s)
decidable (PTIME)

H

Skolem Problem (1930s)

Reachability for discrete linear dynamical systems

Ambient space: Rd (R3 in this example)
Starting point: x ∈ Qd

Linear transformation: M ∈ Qd×d

x

+

2
M

u

x

Mx

Kannan−Lipton "Orbit Problem" (1980s)
decidable (PTIME)

H

Skolem Problem (1930s)

P

H

Reachability for discrete linear dynamical systems

Ambient space: Rd (R3 in this example)
Starting point: x ∈ Qd

Linear transformation: M ∈ Qd×d

x

+

2
M

u

x

Mx

Kannan−Lipton "Orbit Problem" (1980s)
decidable (PTIME)

H

Skolem Problem (1930s)

Positivity Problem (1970s)

P

H

Semialgebraic partitions

Partition Rd into

Semialgebraic partitions

Partition Rd into S1

Semialgebraic partitions

Partition Rd into S1,S2

Semialgebraic partitions

Partition Rd into S1,S2, S3

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Semialgebraic partitions

Partition Rd into S1,S2, S3,S4

Model checking discrete linear dynamical systems

generated by (M, s)

The Model-Checking Problem:
Given W and a specification φ, decide if W ⊨ φ

• Deciding ω-Regular Properties on Linear Recurrence Sequences
Almagor, Karimov, Kelmendi, O., Worrell, in POPL 2021

• What’s Decidable about Linear Loops?
Karimov, Lefaucheux, O., Purser, Varonka, Whiteland, Worrell,
in POPL 2022

• The Power of Positivity
Karimov, Kelmendi, Nieuwveld, O., Worrell, in LICS 2023

• What’s Decidable about Discrete Linear Dynamical Systems?
Karimov, Kelmendi, O., Worrell, in Henzinger Festschrift 2023

Model checking discrete linear dynamical systems

generated by (M, s)

The Model-Checking Problem:
Given W and a specification φ, decide if W ⊨ φ

• Deciding ω-Regular Properties on Linear Recurrence Sequences
Almagor, Karimov, Kelmendi, O., Worrell, in POPL 2021

• What’s Decidable about Linear Loops?
Karimov, Lefaucheux, O., Purser, Varonka, Whiteland, Worrell,
in POPL 2022

• The Power of Positivity
Karimov, Kelmendi, Nieuwveld, O., Worrell, in LICS 2023

• What’s Decidable about Discrete Linear Dynamical Systems?
Karimov, Kelmendi, O., Worrell, in Henzinger Festschrift 2023

Model checking discrete linear dynamical systems

generated by (M, s)

The Model-Checking Problem:
Given W and a specification φ, decide if W ⊨ φ

• Deciding ω-Regular Properties on Linear Recurrence Sequences
Almagor, Karimov, Kelmendi, O., Worrell, in POPL 2021

• What’s Decidable about Linear Loops?
Karimov, Lefaucheux, O., Purser, Varonka, Whiteland, Worrell,
in POPL 2022

• The Power of Positivity
Karimov, Kelmendi, Nieuwveld, O., Worrell, in LICS 2023

• What’s Decidable about Discrete Linear Dynamical Systems?
Karimov, Kelmendi, O., Worrell, in Henzinger Festschrift 2023

Model checking discrete linear dynamical systems

generated by (M, s)

The Model-Checking Problem:
Given W and a specification φ, decide if W ⊨ φ

We consider:

Two different kinds of linear dynamical systems (M, s):

arbitrary linear dynamical systems
diagonalisable linear dynamical systems

Two different kinds of specification formalisms:

arbitrary MSO (fancy version of LTL)
prefix-independent MSO (denoted piMSO)

Several different classes of semialgebraic predicates

The use (or not) of Skolem and/or Positivity oracles

Model checking discrete linear dynamical systems

generated by (M, s)

The Model-Checking Problem:
Given W and a specification φ, decide if W ⊨ φ

We consider:

Two different kinds of linear dynamical systems (M, s):

arbitrary linear dynamical systems
diagonalisable linear dynamical systems

Two different kinds of specification formalisms:

arbitrary MSO (fancy version of LTL)
prefix-independent MSO (denoted piMSO)

Several different classes of semialgebraic predicates

The use (or not) of Skolem and/or Positivity oracles

Model checking discrete linear dynamical systems

generated by (M, s)

The Model-Checking Problem:
Given W and a specification φ, decide if W ⊨ φ

We consider:

Two different kinds of linear dynamical systems (M, s):

arbitrary linear dynamical systems

diagonalisable linear dynamical systems

Two different kinds of specification formalisms:

arbitrary MSO (fancy version of LTL)
prefix-independent MSO (denoted piMSO)

Several different classes of semialgebraic predicates

The use (or not) of Skolem and/or Positivity oracles

Model checking discrete linear dynamical systems

generated by (M, s)

The Model-Checking Problem:
Given W and a specification φ, decide if W ⊨ φ

We consider:

Two different kinds of linear dynamical systems (M, s):

arbitrary linear dynamical systems
diagonalisable linear dynamical systems

Two different kinds of specification formalisms:

arbitrary MSO (fancy version of LTL)
prefix-independent MSO (denoted piMSO)

Several different classes of semialgebraic predicates

The use (or not) of Skolem and/or Positivity oracles

Model checking discrete linear dynamical systems

generated by (M, s)

The Model-Checking Problem:
Given W and a specification φ, decide if W ⊨ φ

We consider:

Two different kinds of linear dynamical systems (M, s):

arbitrary linear dynamical systems
diagonalisable linear dynamical systems

Two different kinds of specification formalisms:

arbitrary MSO (fancy version of LTL)
prefix-independent MSO (denoted piMSO)

Several different classes of semialgebraic predicates

The use (or not) of Skolem and/or Positivity oracles

Model checking discrete linear dynamical systems

generated by (M, s)

The Model-Checking Problem:
Given W and a specification φ, decide if W ⊨ φ

We consider:

Two different kinds of linear dynamical systems (M, s):

arbitrary linear dynamical systems
diagonalisable linear dynamical systems

Two different kinds of specification formalisms:

arbitrary MSO (fancy version of LTL)

prefix-independent MSO (denoted piMSO)

Several different classes of semialgebraic predicates

The use (or not) of Skolem and/or Positivity oracles

Model checking discrete linear dynamical systems

generated by (M, s)

The Model-Checking Problem:
Given W and a specification φ, decide if W ⊨ φ

We consider:

Two different kinds of linear dynamical systems (M, s):

arbitrary linear dynamical systems
diagonalisable linear dynamical systems

Two different kinds of specification formalisms:

arbitrary MSO (fancy version of LTL)
prefix-independent MSO (denoted piMSO)

Several different classes of semialgebraic predicates

The use (or not) of Skolem and/or Positivity oracles

Model checking discrete linear dynamical systems

generated by (M, s)

The Model-Checking Problem:
Given W and a specification φ, decide if W ⊨ φ

We consider:

Two different kinds of linear dynamical systems (M, s):

arbitrary linear dynamical systems
diagonalisable linear dynamical systems

Two different kinds of specification formalisms:

arbitrary MSO (fancy version of LTL)
prefix-independent MSO (denoted piMSO)

Several different classes of semialgebraic predicates

The use (or not) of Skolem and/or Positivity oracles

Model checking discrete linear dynamical systems

generated by (M, s)

The Model-Checking Problem:
Given W and a specification φ, decide if W ⊨ φ

We consider:

Two different kinds of linear dynamical systems (M, s):

arbitrary linear dynamical systems
diagonalisable linear dynamical systems

Two different kinds of specification formalisms:

arbitrary MSO (fancy version of LTL)
prefix-independent MSO (denoted piMSO)

Several different classes of semialgebraic predicates

The use (or not) of Skolem and/or Positivity oracles

Quiz time! Prefix-independence

Which of the following specs are prefix-independent?

1 skolem: F H

2 positivity: G H+

3 ultimate positivity: F G H+

4 infinite recurrence: G F P

Only (3) and (4)

Quiz time! Prefix-independence

Which of the following specs are prefix-independent?

1 skolem: F H

2 positivity: G H+

3 ultimate positivity: F G H+

4 infinite recurrence: G F P

Only (3) and (4)

Quiz time! Prefix-independence

Which of the following specs are prefix-independent?

1 skolem: F H

2 positivity: G H+

3 ultimate positivity: F G H+

4 infinite recurrence: G F P

Only (3) and (4)

Quiz time! Prefix-independence

Which of the following specs are prefix-independent?

1 skolem: F H

2 positivity: G H+

3 ultimate positivity: F G H+

4 infinite recurrence: G F P

Only (3) and (4)

Quiz time! Prefix-independence

Which of the following specs are prefix-independent?

1 skolem: F H

2 positivity: G H+

3 ultimate positivity: F G H+

4 infinite recurrence: G F P

Only (3) and (4)

Quiz time! Prefix-independence

Which of the following specs are prefix-independent?

1 skolem: F H

2 positivity: G H+

3 ultimate positivity: F G H+

4 infinite recurrence: G F P

Only (3) and (4)

MSO — Monadic Second-Order logic (of order)

The domain is the set of natural numbers N
You are given a finite collection of monadic predicates
(P,Q,R, . . .)

You can use any integer, and expressions such as “+2”

You are allowed to use “=” and “<” between integers

You can use both first-order variables (x , y , z , . . .) and
second-order monadic variables (X ,Y ,Z , . . .)

You can then write “X (y)” or “y ∈ X” (same with P etc.)

You are allowed first- and second-order quantifiers, and all
Boolean connectives

Example: express “P eventually contains all even integers”

∃X . 0 ∈ X ∧ 1 /∈ X ∧ ∀x . (x ∈ X ↔ x + 2 ∈ X)∧
∃y . ∀z > y . z ∈ X → z ∈ P

Question: Is this specification prefix-independent? NO!

MSO — Monadic Second-Order logic (of order)

The domain is the set of natural numbers N

You are given a finite collection of monadic predicates
(P,Q,R, . . .)

You can use any integer, and expressions such as “+2”

You are allowed to use “=” and “<” between integers

You can use both first-order variables (x , y , z , . . .) and
second-order monadic variables (X ,Y ,Z , . . .)

You can then write “X (y)” or “y ∈ X” (same with P etc.)

You are allowed first- and second-order quantifiers, and all
Boolean connectives

Example: express “P eventually contains all even integers”

∃X . 0 ∈ X ∧ 1 /∈ X ∧ ∀x . (x ∈ X ↔ x + 2 ∈ X)∧
∃y . ∀z > y . z ∈ X → z ∈ P

Question: Is this specification prefix-independent? NO!

MSO — Monadic Second-Order logic (of order)

The domain is the set of natural numbers N
You are given a finite collection of monadic predicates
(P,Q,R, . . .)

You can use any integer, and expressions such as “+2”

You are allowed to use “=” and “<” between integers

You can use both first-order variables (x , y , z , . . .) and
second-order monadic variables (X ,Y ,Z , . . .)

You can then write “X (y)” or “y ∈ X” (same with P etc.)

You are allowed first- and second-order quantifiers, and all
Boolean connectives

Example: express “P eventually contains all even integers”

∃X . 0 ∈ X ∧ 1 /∈ X ∧ ∀x . (x ∈ X ↔ x + 2 ∈ X)∧
∃y . ∀z > y . z ∈ X → z ∈ P

Question: Is this specification prefix-independent? NO!

MSO — Monadic Second-Order logic (of order)

The domain is the set of natural numbers N
You are given a finite collection of monadic predicates
(P,Q,R, . . .)

You can use any integer, and expressions such as “+2”

You are allowed to use “=” and “<” between integers

You can use both first-order variables (x , y , z , . . .) and
second-order monadic variables (X ,Y ,Z , . . .)

You can then write “X (y)” or “y ∈ X” (same with P etc.)

You are allowed first- and second-order quantifiers, and all
Boolean connectives

Example: express “P eventually contains all even integers”

∃X . 0 ∈ X ∧ 1 /∈ X ∧ ∀x . (x ∈ X ↔ x + 2 ∈ X)∧
∃y . ∀z > y . z ∈ X → z ∈ P

Question: Is this specification prefix-independent? NO!

MSO — Monadic Second-Order logic (of order)

The domain is the set of natural numbers N
You are given a finite collection of monadic predicates
(P,Q,R, . . .)

You can use any integer, and expressions such as “+2”

You are allowed to use “=” and “<” between integers

You can use both first-order variables (x , y , z , . . .) and
second-order monadic variables (X ,Y ,Z , . . .)

You can then write “X (y)” or “y ∈ X” (same with P etc.)

You are allowed first- and second-order quantifiers, and all
Boolean connectives

Example: express “P eventually contains all even integers”

∃X . 0 ∈ X ∧ 1 /∈ X ∧ ∀x . (x ∈ X ↔ x + 2 ∈ X)∧
∃y . ∀z > y . z ∈ X → z ∈ P

Question: Is this specification prefix-independent? NO!

MSO — Monadic Second-Order logic (of order)

The domain is the set of natural numbers N
You are given a finite collection of monadic predicates
(P,Q,R, . . .)

You can use any integer, and expressions such as “+2”

You are allowed to use “=” and “<” between integers

You can use both first-order variables (x , y , z , . . .) and
second-order monadic variables (X ,Y ,Z , . . .)

You can then write “X (y)” or “y ∈ X” (same with P etc.)

You are allowed first- and second-order quantifiers, and all
Boolean connectives

Example: express “P eventually contains all even integers”

∃X . 0 ∈ X ∧ 1 /∈ X ∧ ∀x . (x ∈ X ↔ x + 2 ∈ X)∧
∃y . ∀z > y . z ∈ X → z ∈ P

Question: Is this specification prefix-independent? NO!

MSO — Monadic Second-Order logic (of order)

The domain is the set of natural numbers N
You are given a finite collection of monadic predicates
(P,Q,R, . . .)

You can use any integer, and expressions such as “+2”

You are allowed to use “=” and “<” between integers

You can use both first-order variables (x , y , z , . . .) and
second-order monadic variables (X ,Y ,Z , . . .)

You can then write “X (y)” or “y ∈ X” (same with P etc.)

You are allowed first- and second-order quantifiers, and all
Boolean connectives

Example: express “P eventually contains all even integers”

∃X . 0 ∈ X ∧ 1 /∈ X ∧ ∀x . (x ∈ X ↔ x + 2 ∈ X)∧
∃y . ∀z > y . z ∈ X → z ∈ P

Question: Is this specification prefix-independent? NO!

MSO — Monadic Second-Order logic (of order)

The domain is the set of natural numbers N
You are given a finite collection of monadic predicates
(P,Q,R, . . .)

You can use any integer, and expressions such as “+2”

You are allowed to use “=” and “<” between integers

You can use both first-order variables (x , y , z , . . .) and
second-order monadic variables (X ,Y ,Z , . . .)

You can then write “X (y)” or “y ∈ X” (same with P etc.)

You are allowed first- and second-order quantifiers, and all
Boolean connectives

Example: express “P eventually contains all even integers”

∃X . 0 ∈ X ∧ 1 /∈ X ∧ ∀x . (x ∈ X ↔ x + 2 ∈ X)∧
∃y . ∀z > y . z ∈ X → z ∈ P

Question: Is this specification prefix-independent? NO!

MSO — Monadic Second-Order logic (of order)

The domain is the set of natural numbers N
You are given a finite collection of monadic predicates
(P,Q,R, . . .)

You can use any integer, and expressions such as “+2”

You are allowed to use “=” and “<” between integers

You can use both first-order variables (x , y , z , . . .) and
second-order monadic variables (X ,Y ,Z , . . .)

You can then write “X (y)” or “y ∈ X” (same with P etc.)

You are allowed first- and second-order quantifiers, and all
Boolean connectives

Example: express “P eventually contains all even integers”

∃X . 0 ∈ X ∧ 1 /∈ X ∧ ∀x . (x ∈ X ↔ x + 2 ∈ X)∧
∃y . ∀z > y . z ∈ X → z ∈ P

Question: Is this specification prefix-independent? NO!

MSO — Monadic Second-Order logic (of order)

The domain is the set of natural numbers N
You are given a finite collection of monadic predicates
(P,Q,R, . . .)

You can use any integer, and expressions such as “+2”

You are allowed to use “=” and “<” between integers

You can use both first-order variables (x , y , z , . . .) and
second-order monadic variables (X ,Y ,Z , . . .)

You can then write “X (y)” or “y ∈ X” (same with P etc.)

You are allowed first- and second-order quantifiers, and all
Boolean connectives

Example: express “P eventually contains all even integers”

∃X . 0 ∈ X ∧ 1 /∈ X ∧ ∀x . (x ∈ X ↔ x + 2 ∈ X)∧
∃y . ∀z > y . z ∈ X → z ∈ P

Question: Is this specification prefix-independent? NO!

MSO — Monadic Second-Order logic (of order)

The domain is the set of natural numbers N
You are given a finite collection of monadic predicates
(P,Q,R, . . .)

You can use any integer, and expressions such as “+2”

You are allowed to use “=” and “<” between integers

You can use both first-order variables (x , y , z , . . .) and
second-order monadic variables (X ,Y ,Z , . . .)

You can then write “X (y)” or “y ∈ X” (same with P etc.)

You are allowed first- and second-order quantifiers, and all
Boolean connectives

Example: express “P eventually contains all even integers”

∃X . 0 ∈ X ∧ 1 /∈ X ∧ ∀x . (x ∈ X ↔ x + 2 ∈ X)∧
∃y . ∀z > y . z ∈ X → z ∈ P

Question: Is this specification prefix-independent?

NO!

MSO — Monadic Second-Order logic (of order)

The domain is the set of natural numbers N
You are given a finite collection of monadic predicates
(P,Q,R, . . .)

You can use any integer, and expressions such as “+2”

You are allowed to use “=” and “<” between integers

You can use both first-order variables (x , y , z , . . .) and
second-order monadic variables (X ,Y ,Z , . . .)

You can then write “X (y)” or “y ∈ X” (same with P etc.)

You are allowed first- and second-order quantifiers, and all
Boolean connectives

Example: express “P eventually contains all even integers”

∃X . 0 ∈ X ∧ 1 /∈ X ∧ ∀x . (x ∈ X ↔ x + 2 ∈ X)∧
∃y . ∀z > y . z ∈ X → z ∈ P

Question: Is this specification prefix-independent? NO!

Classes of semialgebraic predicates

We work in ambient space Rd

Definition (S: the semialgebraic sets)

A set is semialgebraic if it can be defined as a
Boolean combination of polynomial inequalities.

Definition (C: the constructible sets)

A set is constructible if it can be defined as a
Boolean combination of polynomial equalities.
i.e., T = Boolean closure of algebraic sets.

Definition (T : the tame sets)

The class T comprises all semialgebraic sets that
are either contained in a three-dimensional
subspace of Rd , or that have intrinsic dimension
at most one. T is defined to be the smallest such
class which is closed under all Boolean operations.

Classes of semialgebraic predicates

We work in ambient space Rd

Definition (S: the semialgebraic sets)

A set is semialgebraic if it can be defined as a
Boolean combination of polynomial inequalities.

Definition (C: the constructible sets)

A set is constructible if it can be defined as a
Boolean combination of polynomial equalities.
i.e., T = Boolean closure of algebraic sets.

Definition (T : the tame sets)

The class T comprises all semialgebraic sets that
are either contained in a three-dimensional
subspace of Rd , or that have intrinsic dimension
at most one. T is defined to be the smallest such
class which is closed under all Boolean operations.

Classes of semialgebraic predicates

We work in ambient space Rd

Definition (S: the semialgebraic sets)

A set is semialgebraic if it can be defined as a
Boolean combination of polynomial inequalities.

Definition (C: the constructible sets)

A set is constructible if it can be defined as a
Boolean combination of polynomial equalities.
i.e., T = Boolean closure of algebraic sets.

Definition (T : the tame sets)

The class T comprises all semialgebraic sets that
are either contained in a three-dimensional
subspace of Rd , or that have intrinsic dimension
at most one. T is defined to be the smallest such
class which is closed under all Boolean operations.

Classes of semialgebraic predicates

We work in ambient space Rd

Definition (S: the semialgebraic sets)

A set is semialgebraic if it can be defined as a
Boolean combination of polynomial inequalities.

Definition (C: the constructible sets)

A set is constructible if it can be defined as a
Boolean combination of polynomial equalities.
i.e., T = Boolean closure of algebraic sets.

Definition (T : the tame sets)

The class T comprises all semialgebraic sets that
are either contained in a three-dimensional
subspace of Rd , or that have intrinsic dimension
at most one. T is defined to be the smallest such
class which is closed under all Boolean operations.

Classes of semialgebraic predicates

We work in ambient space Rd

Definition (S: the semialgebraic sets)

A set is semialgebraic if it can be defined as a
Boolean combination of polynomial inequalities.

Definition (C: the constructible sets)

A set is constructible if it can be defined as a
Boolean combination of polynomial equalities.
i.e., T = Boolean closure of algebraic sets.

Definition (T : the tame sets)

The class T comprises all semialgebraic sets that
are either contained in a three-dimensional
subspace of Rd , or that have intrinsic dimension
at most one. T is defined to be the smallest such
class which is closed under all Boolean operations.

Classes of semialgebraic predicates

We work in ambient space Rd

Definition (S: the semialgebraic sets)

A set is semialgebraic if it can be defined as a
Boolean combination of polynomial inequalities.

Definition (C: the constructible sets)

A set is constructible if it can be defined as a
Boolean combination of polynomial equalities.
i.e., T = Boolean closure of algebraic sets.

Definition (T : the tame sets)

The class T comprises all semialgebraic sets that
are either contained in a three-dimensional
subspace of Rd , or that have intrinsic dimension
at most one. T is defined to be the smallest such
class which is closed under all Boolean operations.

Classes of semialgebraic predicates

We work in ambient space Rd

Definition (S: the semialgebraic sets)

A set is semialgebraic if it can be defined as a
Boolean combination of polynomial inequalities.

Definition (C: the constructible sets)

A set is constructible if it can be defined as a
Boolean combination of polynomial equalities.
i.e., T = Boolean closure of algebraic sets.

Definition (T : the tame sets)

The class T comprises all semialgebraic sets that
are either contained in a three-dimensional
subspace of Rd , or that have intrinsic dimension
at most one. T is defined to be the smallest such
class which is closed under all Boolean operations.

Examples in R2: two line segments

Examples in R2: two line segments

Examples in R2: two line segments

Examples in R3, R4, and R5

u

Kannan−Lipton "Orbit Problem" (1980s)
decidable (PTIME)

H

Skolem Problem (1930s)

Positivity Problem (1970s)

P

H
+

Examples in R3, R4, and R5

u

decidable (PTIME)

H

Skolem Problem (1930s)

P

H
+

Kannan−Lipton "Orbit Problem" (1980s)

Positivity Problem (1970s)

Examples in R3, R4, and R5

u

decidable (PTIME)

H

Skolem Problem (1930s)

H
+

Kannan−Lipton "Orbit Problem" (1980s)

Positivity Problem (1970s)

P=(a,b,c)

Examples in R3, R4, and R5

u

decidable (PTIME)

H

Skolem Problem (1930s)

H
+

Kannan−Lipton "Orbit Problem" (1980s)

Positivity Problem (1970s)

P=(a,b,c)

[x=a & y=b & z=c]

Examples in R3, R4, and R5

[=0]

[x=a & y=b & z=c]

.x u

u

decidable (PTIME)

H

Skolem Problem (1930s)

H
+

Kannan−Lipton "Orbit Problem" (1980s)

Positivity Problem (1970s)

P=(a,b,c)

Examples in R3, R4, and R5

[=0]
.[>0]x u

[x=a & y=b & z=c]

.x u

u

decidable (PTIME)

H

Skolem Problem (1930s)

H
+

Kannan−Lipton "Orbit Problem" (1980s)

Positivity Problem (1970s)

P=(a,b,c)

Classes of predicates: summary

S

Classes of predicates: summary

S

C

Classes of predicates: summary

S

T

C

Classes of predicates: summary

C

T C+

S

T

Model checking discrete linear dynamical systems

Model checking discrete linear dynamical systems

• unconditional decidability

• assuming a Skolem oracle

• assuming a Positivity oracle

arbitrary LDS diagonalisable LDS

MSO

T / T ⊕ C / T ⊕ C T / T ⊕ C / S

piMSO

T ⊕ C / T ⊕ C / T ⊕ C S / S / S

In a precise sense, all these results are tight:
improving them runs into Skolem-hardness,
or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm
can produce correctness certificates!

Model checking discrete linear dynamical systems

• unconditional decidability

• assuming a Skolem oracle

• assuming a Positivity oracle

arbitrary LDS diagonalisable LDS

MSO

T / T ⊕ C / T ⊕ C T / T ⊕ C / S

piMSO

T ⊕ C / T ⊕ C / T ⊕ C S / S / S

In a precise sense, all these results are tight:
improving them runs into Skolem-hardness,
or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm
can produce correctness certificates!

Model checking discrete linear dynamical systems

• unconditional decidability

• assuming a Skolem oracle

• assuming a Positivity oracle

arbitrary LDS diagonalisable LDS

MSO T

/ T ⊕ C / T ⊕ C

T

/ T ⊕ C / S

piMSO

T ⊕ C / T ⊕ C / T ⊕ C S / S / S

In a precise sense, all these results are tight:
improving them runs into Skolem-hardness,
or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm
can produce correctness certificates!

Model checking discrete linear dynamical systems

• unconditional decidability

• assuming a Skolem oracle

• assuming a Positivity oracle

arbitrary LDS diagonalisable LDS

MSO T

/ T ⊕ C / T ⊕ C

T

/ T ⊕ C / S

piMSO T ⊕ C

/ T ⊕ C / T ⊕ C S / S / S

In a precise sense, all these results are tight:
improving them runs into Skolem-hardness,
or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm
can produce correctness certificates!

Model checking discrete linear dynamical systems

• unconditional decidability

• assuming a Skolem oracle

• assuming a Positivity oracle

arbitrary LDS diagonalisable LDS

MSO T

/ T ⊕ C / T ⊕ C

T

/ T ⊕ C / S

piMSO T ⊕ C

/ T ⊕ C / T ⊕ C

S

/ S / S

In a precise sense, all these results are tight:
improving them runs into Skolem-hardness,
or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm
can produce correctness certificates!

Model checking discrete linear dynamical systems

• unconditional decidability

• assuming a Skolem oracle

• assuming a Positivity oracle

arbitrary LDS diagonalisable LDS

MSO T

/ T ⊕ C / T ⊕ C

T

/ T ⊕ C / S

piMSO T ⊕ C

/ T ⊕ C / T ⊕ C

S

/ S / S

In a precise sense, all these results are tight:
improving them runs into Skolem-hardness,
or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm
can produce correctness certificates!

Model checking discrete linear dynamical systems

• unconditional decidability

• assuming a Skolem oracle

• assuming a Positivity oracle

arbitrary LDS diagonalisable LDS

MSO T / T ⊕ C

/ T ⊕ C

T / T ⊕ C

/ S

piMSO T ⊕ C

/ T ⊕ C / T ⊕ C

S

/ S / S

In a precise sense, all these results are tight:
improving them runs into Skolem-hardness,
or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm
can produce correctness certificates!

Model checking discrete linear dynamical systems

• unconditional decidability

• assuming a Skolem oracle

• assuming a Positivity oracle

arbitrary LDS diagonalisable LDS

MSO T / T ⊕ C

/ T ⊕ C

T / T ⊕ C

/ S

piMSO T ⊕ C / T ⊕ C

/ T ⊕ C

S / S

/ S

In a precise sense, all these results are tight:
improving them runs into Skolem-hardness,
or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm
can produce correctness certificates!

Model checking discrete linear dynamical systems

• unconditional decidability

• assuming a Skolem oracle

• assuming a Positivity oracle

arbitrary LDS diagonalisable LDS

MSO T / T ⊕ C

/ T ⊕ C

T / T ⊕ C

/ S

piMSO T ⊕ C / T ⊕ C

/ T ⊕ C

S / S

/ S

In a precise sense, all these results are tight:
improving them runs into Skolem-hardness,
or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm
can produce correctness certificates!

Model checking discrete linear dynamical systems

• unconditional decidability

• assuming a Skolem oracle

• assuming a Positivity oracle

arbitrary LDS diagonalisable LDS

MSO T / T ⊕ C / T ⊕ C T / T ⊕ C

/ S

piMSO T ⊕ C / T ⊕ C

/ T ⊕ C

S / S

/ S

In a precise sense, all these results are tight:
improving them runs into Skolem-hardness,
or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm
can produce correctness certificates!

Model checking discrete linear dynamical systems

• unconditional decidability

• assuming a Skolem oracle

• assuming a Positivity oracle

arbitrary LDS diagonalisable LDS

MSO T / T ⊕ C / T ⊕ C T / T ⊕ C / S
piMSO T ⊕ C / T ⊕ C

/ T ⊕ C

S / S

/ S

In a precise sense, all these results are tight:
improving them runs into Skolem-hardness,
or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm
can produce correctness certificates!

Model checking discrete linear dynamical systems

• unconditional decidability

• assuming a Skolem oracle

• assuming a Positivity oracle

arbitrary LDS diagonalisable LDS

MSO T / T ⊕ C / T ⊕ C T / T ⊕ C / S
piMSO T ⊕ C / T ⊕ C / T ⊕ C S / S / S

In a precise sense, all these results are tight:
improving them runs into Skolem-hardness,
or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm
can produce correctness certificates!

Model checking discrete linear dynamical systems

• unconditional decidability

• assuming a Skolem oracle

• assuming a Positivity oracle

arbitrary LDS diagonalisable LDS

MSO T / T ⊕ C / T ⊕ C T / T ⊕ C / S
piMSO T ⊕ C / T ⊕ C / T ⊕ C S / S / S

In a precise sense, all these results are tight:
improving them runs into Skolem-hardness,
or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm
can produce correctness certificates!

Model checking discrete linear dynamical systems

• unconditional decidability

• assuming a Skolem oracle

• assuming a Positivity oracle

arbitrary LDS diagonalisable LDS

MSO T / T ⊕ C / T ⊕ C T / T ⊕ C / S
piMSO T ⊕ C / T ⊕ C / T ⊕ C S / S / S

In a precise sense, all these results are tight:
improving them runs into Skolem-hardness,
or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm
can produce correctness certificates!

Decidability of MSO and extensions

Büchi showed in 1962 that MSO is decidable

Central Question: what kinds of predicates can we add to MSO
whilst retaining decidability?

For example, let P ⊆ N be the set of prime numbers.
Is MSO(P) decidable??

This is open! But appears very difficult, e.g.

∀x . ∃y > x . P(y) ∧ P(y + 2)

Decidability of MSO and extensions

Büchi showed in 1962 that MSO is decidable

Central Question: what kinds of predicates can we add to MSO
whilst retaining decidability?

For example, let P ⊆ N be the set of prime numbers.
Is MSO(P) decidable??

This is open! But appears very difficult, e.g.

∀x . ∃y > x . P(y) ∧ P(y + 2)

Decidability of MSO and extensions

Büchi showed in 1962 that MSO is decidable

Central Question: what kinds of predicates can we add to MSO
whilst retaining decidability?

For example, let P ⊆ N be the set of prime numbers.
Is MSO(P) decidable??

This is open! But appears very difficult, e.g.

∀x . ∃y > x . P(y) ∧ P(y + 2)

Decidability of MSO and extensions

Büchi showed in 1962 that MSO is decidable

Central Question: what kinds of predicates can we add to MSO
whilst retaining decidability?

For example, let P ⊆ N be the set of prime numbers.
Is MSO(P) decidable??

This is open! But appears very difficult, e.g.

∀x . ∃y > x . P(y) ∧ P(y + 2)

Decidability of MSO and extensions

Theorem (Semënov, 1984)

If P is effectively almost-periodic, then
MSO(P) is decidable.

A word w is (effectively) almost-periodic if for every finite word u,
we can bound the gaps between consecutive occurrences of u in w :

Decidability of MSO and extensions

Theorem (Semënov, 1984)

If P is effectively almost-periodic, then
MSO(P) is decidable.

A word w is (effectively) almost-periodic if for every finite word u,
we can bound the gaps between consecutive occurrences of u in w :

Decidability of MSO and extensions

Theorem (Semënov, 1984)

If P is effectively almost-periodic, then
MSO(P) is decidable.

What about MSO(P1,P2, . . . ,Pk)?

Theorem (Semënov, 1983)

One can define P1 and P2 both effectively almost-periodic, such
that MSO(P1,P2) is undecidable!

Much (ongoing) work on this central question! By e.g., Elgot,
Rabin, Carton, Thomas, Rabinovich, Fijalkow, Paperman, . . .

Decidability of MSO and extensions

Theorem (Semënov, 1984)

If P is effectively almost-periodic, then
MSO(P) is decidable.

What about MSO(P1,P2, . . . ,Pk)?

Theorem (Semënov, 1983)

One can define P1 and P2 both effectively almost-periodic, such
that MSO(P1,P2) is undecidable!

Much (ongoing) work on this central question! By e.g., Elgot,
Rabin, Carton, Thomas, Rabinovich, Fijalkow, Paperman, . . .

Decidability of MSO and extensions

Theorem (Semënov, 1984)

If P is effectively almost-periodic, then
MSO(P) is decidable.

What about MSO(P1,P2, . . . ,Pk)?

Theorem (Semënov, 1983)

One can define P1 and P2 both effectively almost-periodic, such
that MSO(P1,P2) is undecidable!

Much (ongoing) work on this central question! By e.g., Elgot,
Rabin, Carton, Thomas, Rabinovich, Fijalkow, Paperman, . . .

Toric words

So how can one ensure that MSO(P1, . . . ,Pk) is decidable?

To answer this question in the context of linear dynamical systems,
we developed the theory of (ultimately) toric words

Theorem

1 Ultimately toric words are almost-periodic.

2 Effectively ultimately toric words are closed under products.

Theorem

Tame predicates give rise to effectively ultimately toric words.

Corollary

Let (M, s) be a linear dynamical system in ambient space Rd , and
let S1, . . . ,Sk ⊆ Rd be tame semialgebraic predicates.
Let P1, . . . ,Pk ⊆ N be the set of visiting times of the orbit of
(M, s) in S1, . . . ,Sk respectively.
Then MSO(P1, . . . ,Pk) is decidable.

Toric words

So how can one ensure that MSO(P1, . . . ,Pk) is decidable?

To answer this question in the context of linear dynamical systems,
we developed the theory of (ultimately) toric words

Theorem

1 Ultimately toric words are almost-periodic.

2 Effectively ultimately toric words are closed under products.

Theorem

Tame predicates give rise to effectively ultimately toric words.

Corollary

Let (M, s) be a linear dynamical system in ambient space Rd , and
let S1, . . . ,Sk ⊆ Rd be tame semialgebraic predicates.
Let P1, . . . ,Pk ⊆ N be the set of visiting times of the orbit of
(M, s) in S1, . . . ,Sk respectively.
Then MSO(P1, . . . ,Pk) is decidable.

Toric words

So how can one ensure that MSO(P1, . . . ,Pk) is decidable?

To answer this question in the context of linear dynamical systems,
we developed the theory of (ultimately) toric words

Theorem

1 Ultimately toric words are almost-periodic.

2 Effectively ultimately toric words are closed under products.

Theorem

Tame predicates give rise to effectively ultimately toric words.

Corollary

Let (M, s) be a linear dynamical system in ambient space Rd , and
let S1, . . . ,Sk ⊆ Rd be tame semialgebraic predicates.
Let P1, . . . ,Pk ⊆ N be the set of visiting times of the orbit of
(M, s) in S1, . . . ,Sk respectively.
Then MSO(P1, . . . ,Pk) is decidable.

Toric words

So how can one ensure that MSO(P1, . . . ,Pk) is decidable?

To answer this question in the context of linear dynamical systems,
we developed the theory of (ultimately) toric words

Theorem

1 Ultimately toric words are almost-periodic.

2 Effectively ultimately toric words are closed under products.

Theorem

Tame predicates give rise to effectively ultimately toric words.

Corollary

Let (M, s) be a linear dynamical system in ambient space Rd , and
let S1, . . . ,Sk ⊆ Rd be tame semialgebraic predicates.
Let P1, . . . ,Pk ⊆ N be the set of visiting times of the orbit of
(M, s) in S1, . . . ,Sk respectively.
Then MSO(P1, . . . ,Pk) is decidable.

Toric words

So how can one ensure that MSO(P1, . . . ,Pk) is decidable?

To answer this question in the context of linear dynamical systems,
we developed the theory of (ultimately) toric words

Theorem

1 Ultimately toric words are almost-periodic.

2 Effectively ultimately toric words are closed under products.

Theorem

Tame predicates give rise to effectively ultimately toric words.

Corollary

Let (M, s) be a linear dynamical system in ambient space Rd , and
let S1, . . . ,Sk ⊆ Rd be tame semialgebraic predicates.
Let P1, . . . ,Pk ⊆ N be the set of visiting times of the orbit of
(M, s) in S1, . . . ,Sk respectively.
Then MSO(P1, . . . ,Pk) is decidable.

The Algorithmic Theory of Linear Systems

multiple control locations

discrete continuous

single control location

The Algorithmic Theory of Linear Systems

multiple control locations

discrete continuous

single control location dynamical
systems

discrete

The Algorithmic Theory of Linear Systems

discrete continuous

single control location

multiple control locations

continuous
dynamical

systems
dynamical

systems

discrete

The Algorithmic Theory of Linear Systems

discrete continuous

single control location

multiple control locations

continuous
dynamical

systems

affine
programs

dynamical
systems

discrete

The Algorithmic Theory of Linear Systems

discrete continuous

single control location

multiple control locations

continuous
dynamical

systems

affine
programs automata

hybrid

dynamical
systems

discrete

The Algorithmic Theory of Linear Systems

discrete continuous

single control location

multiple control locations

continuous
dynamical

systems

affine
programs automata

hybrid

dynamical
systems

discrete

The Algorithmic Theory of Linear Systems

discrete continuous

single control location

multiple control locations

reachability

continuous
dynamical

systems

affine
programs automata

hybrid

dynamical
systems

discrete

The Algorithmic Theory of Linear Systems

reachability

discrete continuous

invariant generation

single control location

multiple control locations

continuous
dynamical

systems

affine
programs automata

hybrid

dynamical
systems

discrete

The Algorithmic Theory of Linear Systems

discrete continuous

invariant generation

model checking

single control location

multiple control locations

reachability

continuous
dynamical

systems

affine
programs automata

hybrid

dynamical
systems

discrete

The Algorithmic Theory of Linear Systems

discrete continuous

invariant generation

model checking

parametric synthesis

single control location

multiple control locations

reachability

continuous
dynamical

systems

affine
programs automata

hybrid

dynamical
systems

discrete

The Algorithmic Theory of Linear Systems

continuous

invariant generation

model checking

parametric synthesis

approximation
robust analysis &

single control location

multiple control locations

reachability

discrete

continuous
dynamical

systems

affine
programs automata

hybrid

dynamical
systems

discrete

The Algorithmic Theory of Linear Systems

discrete

invariant generation

model checking

control

parametric synthesis

approximation
robust analysis &

single control location

multiple control locations

reachability

continuous

continuous
dynamical

systems

affine
programs automata

hybrid

dynamical
systems

discrete

The Algorithmic Theory of Linear Systems

discrete

reachability

continuous

invariant generation

model checking

control

parametric synthesis

approximation
robust analysis &

single control location

multiple control locations hybrid

dynamical
continuous

affine
programs automata

systems

discrete
dynamical

systems

The Algorithmic Theory of Linear Systems

multiple control locations

reachability

discrete continuous

invariant generation

model checking

control

parametric synthesis

approximation
robust analysis &

single control location

hybrid

systems
dynamical

continuous

programs
affine

automata

dynamical
discrete

systems

The Algorithmic Theory of Linear Systems

discrete

reachability

continuous

invariant generation

model checking

control

parametric synthesis

approximation
robust analysis &

single control location

multiple control locations

dynamical

affine hybrid

systems

automataprograms

continuous

systems
dynamical

discrete

