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The Model-Checking Problem:
Given W and a specification φ, decide if W ⊨ φ
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• What’s Decidable about Discrete Linear Dynamical Systems?
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MSO — Monadic Second-Order logic (of order)

The domain is the set of natural numbers N
You are given a finite collection of monadic predicates
(P,Q,R, . . .)

You can use any integer, and expressions such as “+2”

You are allowed to use “=” and “<” between integers

You can use both first-order variables (x , y , z , . . .) and
second-order monadic variables (X ,Y ,Z , . . .)

You can then write “X (y)” or “y ∈ X” (same with P etc.)

You are allowed first- and second-order quantifiers, and all
Boolean connectives

Example: express “P eventually contains all even integers”

∃X . 0 ∈ X ∧ 1 /∈ X ∧ ∀x . (x ∈ X ↔ x + 2 ∈ X )∧
∃y . ∀z > y . z ∈ X → z ∈ P

Question: Is this specification prefix-independent? NO!
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Classes of semialgebraic predicates

We work in ambient space Rd

Definition (S: the semialgebraic sets)

A set is semialgebraic if it can be defined as a
Boolean combination of polynomial inequalities.

Definition (C: the constructible sets)

A set is constructible if it can be defined as a
Boolean combination of polynomial equalities.
i.e., T = Boolean closure of algebraic sets.

Definition (T : the tame sets)

The class T comprises all semialgebraic sets that
are either contained in a three-dimensional
subspace of Rd , or that have intrinsic dimension
at most one. T is defined to be the smallest such
class which is closed under all Boolean operations.



Classes of semialgebraic predicates

We work in ambient space Rd

Definition (S: the semialgebraic sets)

A set is semialgebraic if it can be defined as a
Boolean combination of polynomial inequalities.

Definition (C: the constructible sets)

A set is constructible if it can be defined as a
Boolean combination of polynomial equalities.
i.e., T = Boolean closure of algebraic sets.

Definition (T : the tame sets)

The class T comprises all semialgebraic sets that
are either contained in a three-dimensional
subspace of Rd , or that have intrinsic dimension
at most one. T is defined to be the smallest such
class which is closed under all Boolean operations.



Classes of semialgebraic predicates

We work in ambient space Rd

Definition (S: the semialgebraic sets)

A set is semialgebraic if it can be defined as a
Boolean combination of polynomial inequalities.

Definition (C: the constructible sets)

A set is constructible if it can be defined as a
Boolean combination of polynomial equalities.
i.e., T = Boolean closure of algebraic sets.

Definition (T : the tame sets)

The class T comprises all semialgebraic sets that
are either contained in a three-dimensional
subspace of Rd , or that have intrinsic dimension
at most one. T is defined to be the smallest such
class which is closed under all Boolean operations.



Classes of semialgebraic predicates

We work in ambient space Rd

Definition (S: the semialgebraic sets)

A set is semialgebraic if it can be defined as a
Boolean combination of polynomial inequalities.

Definition (C: the constructible sets)

A set is constructible if it can be defined as a
Boolean combination of polynomial equalities.
i.e., T = Boolean closure of algebraic sets.

Definition (T : the tame sets)

The class T comprises all semialgebraic sets that
are either contained in a three-dimensional
subspace of Rd , or that have intrinsic dimension
at most one. T is defined to be the smallest such
class which is closed under all Boolean operations.



Classes of semialgebraic predicates

We work in ambient space Rd

Definition (S: the semialgebraic sets)

A set is semialgebraic if it can be defined as a
Boolean combination of polynomial inequalities.

Definition (C: the constructible sets)

A set is constructible if it can be defined as a
Boolean combination of polynomial equalities.
i.e., T = Boolean closure of algebraic sets.

Definition (T : the tame sets)

The class T comprises all semialgebraic sets that
are either contained in a three-dimensional
subspace of Rd , or that have intrinsic dimension
at most one. T is defined to be the smallest such
class which is closed under all Boolean operations.



Classes of semialgebraic predicates

We work in ambient space Rd

Definition (S: the semialgebraic sets)

A set is semialgebraic if it can be defined as a
Boolean combination of polynomial inequalities.

Definition (C: the constructible sets)

A set is constructible if it can be defined as a
Boolean combination of polynomial equalities.
i.e., T = Boolean closure of algebraic sets.

Definition (T : the tame sets)

The class T comprises all semialgebraic sets that
are either contained in a three-dimensional
subspace of Rd , or that have intrinsic dimension
at most one. T is defined to be the smallest such
class which is closed under all Boolean operations.



Classes of semialgebraic predicates

We work in ambient space Rd

Definition (S: the semialgebraic sets)

A set is semialgebraic if it can be defined as a
Boolean combination of polynomial inequalities.

Definition (C: the constructible sets)

A set is constructible if it can be defined as a
Boolean combination of polynomial equalities.
i.e., T = Boolean closure of algebraic sets.

Definition (T : the tame sets)

The class T comprises all semialgebraic sets that
are either contained in a three-dimensional
subspace of Rd , or that have intrinsic dimension
at most one. T is defined to be the smallest such
class which is closed under all Boolean operations.



Examples in R2: two line segments



Examples in R2: two line segments



Examples in R2: two line segments



Examples in R3, R4, and R5

u

Kannan−Lipton "Orbit Problem" (1980s)
decidable (PTIME)

H

Skolem Problem (1930s)

Positivity Problem (1970s)

P

H
+



Examples in R3, R4, and R5

u

decidable (PTIME)

H

Skolem Problem (1930s)

P

H
+

Kannan−Lipton "Orbit Problem" (1980s)

Positivity Problem (1970s)



Examples in R3, R4, and R5

u

decidable (PTIME)

H

Skolem Problem (1930s)

H
+

Kannan−Lipton "Orbit Problem" (1980s)

Positivity Problem (1970s)

P=(a,b,c)



Examples in R3, R4, and R5

u

decidable (PTIME)

H

Skolem Problem (1930s)

H
+

Kannan−Lipton "Orbit Problem" (1980s)

Positivity Problem (1970s)

P=(a,b,c)

[x=a & y=b & z=c]



Examples in R3, R4, and R5

[ =0]

[x=a & y=b & z=c]

.x u

u

decidable (PTIME)

H

Skolem Problem (1930s)

H
+

Kannan−Lipton "Orbit Problem" (1980s)

Positivity Problem (1970s)

P=(a,b,c)



Examples in R3, R4, and R5

[ =0]
.[ >0]x u

[x=a & y=b & z=c]

.x u

u

decidable (PTIME)

H

Skolem Problem (1930s)

H
+

Kannan−Lipton "Orbit Problem" (1980s)

Positivity Problem (1970s)

P=(a,b,c)



Classes of predicates: summary

S



Classes of predicates: summary

S

C



Classes of predicates: summary

S

T

C



Classes of predicates: summary

C

T C+

S

T



Model checking discrete linear dynamical systems



Model checking discrete linear dynamical systems

• unconditional decidability

• assuming a Skolem oracle

• assuming a Positivity oracle

arbitrary LDS diagonalisable LDS

MSO

T / T ⊕ C / T ⊕ C T / T ⊕ C / S

piMSO

T ⊕ C / T ⊕ C / T ⊕ C S / S / S

In a precise sense, all these results are tight:
improving them runs into Skolem-hardness,
or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm
can produce correctness certificates!



Model checking discrete linear dynamical systems

• unconditional decidability

• assuming a Skolem oracle

• assuming a Positivity oracle

arbitrary LDS diagonalisable LDS

MSO

T / T ⊕ C / T ⊕ C T / T ⊕ C / S

piMSO

T ⊕ C / T ⊕ C / T ⊕ C S / S / S

In a precise sense, all these results are tight:
improving them runs into Skolem-hardness,
or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm
can produce correctness certificates!



Model checking discrete linear dynamical systems

• unconditional decidability

• assuming a Skolem oracle

• assuming a Positivity oracle

arbitrary LDS diagonalisable LDS

MSO T

/ T ⊕ C / T ⊕ C

T

/ T ⊕ C / S

piMSO

T ⊕ C / T ⊕ C / T ⊕ C S / S / S

In a precise sense, all these results are tight:
improving them runs into Skolem-hardness,
or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm
can produce correctness certificates!



Model checking discrete linear dynamical systems

• unconditional decidability

• assuming a Skolem oracle

• assuming a Positivity oracle

arbitrary LDS diagonalisable LDS

MSO T

/ T ⊕ C / T ⊕ C

T

/ T ⊕ C / S

piMSO T ⊕ C

/ T ⊕ C / T ⊕ C S / S / S

In a precise sense, all these results are tight:
improving them runs into Skolem-hardness,
or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm
can produce correctness certificates!



Model checking discrete linear dynamical systems

• unconditional decidability

• assuming a Skolem oracle

• assuming a Positivity oracle

arbitrary LDS diagonalisable LDS

MSO T

/ T ⊕ C / T ⊕ C

T

/ T ⊕ C / S

piMSO T ⊕ C

/ T ⊕ C / T ⊕ C

S

/ S / S

In a precise sense, all these results are tight:
improving them runs into Skolem-hardness,
or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm
can produce correctness certificates!



Model checking discrete linear dynamical systems

• unconditional decidability

• assuming a Skolem oracle

• assuming a Positivity oracle

arbitrary LDS diagonalisable LDS

MSO T

/ T ⊕ C / T ⊕ C

T

/ T ⊕ C / S

piMSO T ⊕ C

/ T ⊕ C / T ⊕ C

S

/ S / S

In a precise sense, all these results are tight:
improving them runs into Skolem-hardness,
or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm
can produce correctness certificates!



Model checking discrete linear dynamical systems

• unconditional decidability

• assuming a Skolem oracle

• assuming a Positivity oracle

arbitrary LDS diagonalisable LDS

MSO T / T ⊕ C

/ T ⊕ C

T / T ⊕ C

/ S

piMSO T ⊕ C

/ T ⊕ C / T ⊕ C

S

/ S / S

In a precise sense, all these results are tight:
improving them runs into Skolem-hardness,
or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm
can produce correctness certificates!



Model checking discrete linear dynamical systems

• unconditional decidability

• assuming a Skolem oracle

• assuming a Positivity oracle

arbitrary LDS diagonalisable LDS

MSO T / T ⊕ C

/ T ⊕ C

T / T ⊕ C

/ S

piMSO T ⊕ C / T ⊕ C

/ T ⊕ C

S / S

/ S

In a precise sense, all these results are tight:
improving them runs into Skolem-hardness,
or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm
can produce correctness certificates!



Model checking discrete linear dynamical systems

• unconditional decidability

• assuming a Skolem oracle

• assuming a Positivity oracle

arbitrary LDS diagonalisable LDS

MSO T / T ⊕ C

/ T ⊕ C

T / T ⊕ C

/ S

piMSO T ⊕ C / T ⊕ C

/ T ⊕ C

S / S

/ S

In a precise sense, all these results are tight:
improving them runs into Skolem-hardness,
or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm
can produce correctness certificates!



Model checking discrete linear dynamical systems

• unconditional decidability

• assuming a Skolem oracle

• assuming a Positivity oracle

arbitrary LDS diagonalisable LDS

MSO T / T ⊕ C / T ⊕ C T / T ⊕ C

/ S

piMSO T ⊕ C / T ⊕ C

/ T ⊕ C

S / S

/ S

In a precise sense, all these results are tight:
improving them runs into Skolem-hardness,
or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm
can produce correctness certificates!



Model checking discrete linear dynamical systems

• unconditional decidability

• assuming a Skolem oracle

• assuming a Positivity oracle

arbitrary LDS diagonalisable LDS

MSO T / T ⊕ C / T ⊕ C T / T ⊕ C / S
piMSO T ⊕ C / T ⊕ C

/ T ⊕ C

S / S

/ S

In a precise sense, all these results are tight:
improving them runs into Skolem-hardness,
or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm
can produce correctness certificates!



Model checking discrete linear dynamical systems

• unconditional decidability

• assuming a Skolem oracle

• assuming a Positivity oracle

arbitrary LDS diagonalisable LDS

MSO T / T ⊕ C / T ⊕ C T / T ⊕ C / S
piMSO T ⊕ C / T ⊕ C / T ⊕ C S / S / S

In a precise sense, all these results are tight:
improving them runs into Skolem-hardness,
or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm
can produce correctness certificates!



Model checking discrete linear dynamical systems

• unconditional decidability

• assuming a Skolem oracle

• assuming a Positivity oracle

arbitrary LDS diagonalisable LDS

MSO T / T ⊕ C / T ⊕ C T / T ⊕ C / S
piMSO T ⊕ C / T ⊕ C / T ⊕ C S / S / S

In a precise sense, all these results are tight:
improving them runs into Skolem-hardness,
or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm
can produce correctness certificates!



Model checking discrete linear dynamical systems

• unconditional decidability

• assuming a Skolem oracle

• assuming a Positivity oracle

arbitrary LDS diagonalisable LDS

MSO T / T ⊕ C / T ⊕ C T / T ⊕ C / S
piMSO T ⊕ C / T ⊕ C / T ⊕ C S / S / S

In a precise sense, all these results are tight:
improving them runs into Skolem-hardness,
or Positivity-hardness, or Diophantine-hardness

Moreover, our unconditional decidability algorithm
can produce correctness certificates!



Decidability of MSO and extensions
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