Regular Separability in Büchi VASS

Pascal Baumann*, Roland Meyer[†], Georg Zetzsche*

*Max Planck Institute for Software Systems (MPI-SWS), [†]TU Braunschweig

Theorietag 2023 (originally STACS 2023)

Separators are Useful

• Many applications to finding separators for two sets of data.

Separators are Useful

- Many applications to finding separators for two sets of data.
- For formal languages, separate good and bad execution traces.

Separators are Useful

- Many applications to finding separators for two sets of data.
- For formal languages, separate good and bad execution traces.
- Can answer safety/reachability questions, serve as over-approximation.

Regular Separability in VASS

Separability:

Regular Separability in VASS

Separability:

Disjointness:

Regular Separability \equiv Disjointness in Coverability VASS

Theorem [Czerwinski, Lasota, M., Muskalla, Kumar, Saivasan, 2018]

Let L_1, L_2 be languages of coverability VASS. If $L_1 \cap L_2 = \emptyset$, then one can always find a regular separator R with $L_1 \subseteq R$ and $L_2 \cap R = \emptyset$.

Regular Separability \equiv Disjointness in Coverability VASS

Theorem [Czerwinski, Lasota, M., Muskalla, Kumar, Saivasan, 2018]

Let L_1, L_2 be languages of coverability VASS. If $L_1 \cap L_2 = \emptyset$, then one can always find a regular separator R with $L_1 \subseteq R$ and $L_2 \cap R = \emptyset$.

Consider formal languages over infinitely long words.

Consider formal languages over infinitely long words.

• Infinite execution traces occur for e.g. servers, operating systems.

Consider formal languages over infinitely long words.

- Infinite execution traces occur for e.g. servers, operating systems.
- Instead of safety, can answer liveness questions.

Consider formal languages over infinitely long words.

- Infinite execution traces occur for e.g. servers, operating systems.
- Instead of safety, can answer liveness questions.
- For VASS we naturally arrive at the Büchi acceptance condition.

Remainder of the Talk

• Formally define Büchi VASS and their regular separability problem.

Remainder of the Talk

- Formally define Büchi VASS and their regular separability problem.
- Show that regular separability $\not\equiv$ disjointness in Büchi VASS.

Remainder of the Talk

- Formally define Büchi VASS and their regular separability problem.
- Show that regular separability $\not\equiv$ disjointness in Büchi VASS.
- Present the ideas needed to prove our main result:

Theorem

Regular separability in Büchi VASS is decidable.

VASS stands for Vector Addition System with States:

VASS stands for Vector Addition System with States:

- Each transitions is labelled by a vector in \mathbb{Z}^d and a word.
- Taking a transition adds its vector, only possible if the result is in \mathbb{N}^d .
- Configuration space is $Q \times \mathbb{N}^d$, initial configuration is $(q_0, \mathbf{0})$.

VASS stands for Vector Addition System with States:

- Each transitions is labelled by a vector in \mathbb{Z}^d and a word.
- Taking a transition adds its vector, only possible if the result is in \mathbb{N}^d .
- Configuration space is $Q \times \mathbb{N}^d$, initial configuration is $(q_0, \mathbf{0})$.

A Büchi VASS is a VASS with the Büchi acceptance condition:

• An infinite run is accepting iff it visits a final state infinitely often.

VASS stands for Vector Addition System with States:

- Each transitions is labelled by a vector in \mathbb{Z}^d and a word.
- Taking a transition adds its vector, only possible if the result is in \mathbb{N}^d .
- Configuration space is $Q \times \mathbb{N}^d$, initial configuration is $(q_0, \mathbf{0})$.

A Büchi VASS is a VASS with the Büchi acceptance condition:

• An infinite run is accepting iff it visits a final state infinitely often.

A language is ω -regular iff it is accepted by a Büchi automaton.

• I.e. a finite state automaton with the Büchi acceptance condition.

Regular Separability in Büchi VASS

Input Two Büchi VASS V_1 , V_2 .

Question Is there an ω -regular R with $L(\mathcal{V}_1) \subseteq R$ and $L(\mathcal{V}_2) \cap R = \emptyset$?

Regular Separability in Büchi VASS Input Two Büchi VASS V_1 , V_2 .

Question Is there an ω -regular R with $L(\mathcal{V}_1) \subseteq R$ and $L(\mathcal{V}_2) \cap R = \emptyset$?

If *R* exists it is called a (regular) separator for $L(\mathcal{V}_1)$ and $L(\mathcal{V}_2)$.

Regular Separability in Büchi VASS Input Two Büchi VASS V_1 , V_2 . Question Is there an ω -regular R with $L(V_1) \subseteq R$ and $L(V_2) \cap R = \emptyset$?

If *R* exists it is called a (regular) separator for $L(\mathcal{V}_1)$ and $L(\mathcal{V}_2)$.

We also write $L(\mathcal{V}_1) \mid L(\mathcal{V}_2)$ to denote regular separability.

Alphabet: $\Sigma := \{a, \bar{a}\}.$ Balance: $\varphi_1 : \Sigma^* \to \mathbb{Z}, w \mapsto |w|_a - |w|_{\bar{a}}.$ //How many more *a*s than $\bar{a}s$.

Alphabet: $\Sigma := \{a, \bar{a}\}.$ Balance: $\varphi_1 : \Sigma^* \to \mathbb{Z}, w \mapsto |w|_a - |w|_{\bar{a}}.$ //How many more *a*s than $\bar{a}s.$

Dyck language $D_1 := \{ w \in \Sigma^{\omega} \mid \forall v \in \text{prefix}(w) : \varphi_1(v) \ge 0 \}$. //No prefix with more $\bar{a}s$ than as.

Alphabet: $\Sigma := \{a, \bar{a}\}.$ Balance: $\varphi_1 : \Sigma^* \to \mathbb{Z}, w \mapsto |w|_a - |w|_{\bar{a}}.$ //How many more *as* than $\bar{a}s.$

Dyck language $D_1 := \{ w \in \Sigma^{\omega} \mid \forall v \in \text{prefix}(w) \colon \varphi_1(v) \ge 0 \}$. //No prefix with more \bar{a} s than as.

Language S: $w \in S$ iff "For every value $m \in \mathbb{N}$, there is a longest prefix v of w with $\varphi_1(v) \ge m$, and for every longer prefix v' we have $\varphi_1(v') < m$."

Alphabet: $\Sigma := \{a, \bar{a}\}.$ Balance: $\varphi_1 : \Sigma^* \to \mathbb{Z}, w \mapsto |w|_a - |w|_{\bar{a}}.$ //How many more *a*s than \bar{a} s.

Dyck language $D_1 := \{ w \in \Sigma^{\omega} \mid \forall v \in \text{prefix}(w) \colon \varphi_1(v) \ge 0 \}$. //No prefix with more \bar{a} s than as.

Language S: $w \in S$ iff "For every value $m \in \mathbb{N}$, there is a longest prefix v of w with $\varphi_1(v) \ge m$, and for every longer prefix v' we have $\varphi_1(v') < m$."

Dyck language $D_1 := \{ w \in \Sigma^{\omega} \mid \forall v \in \text{prefix}(w) : \varphi(v) \ge 0 \}$. //No prefix with more \bar{a} s than as.

Language S: $w \in S$ iff "For every value $m \in \mathbb{N}$, there is a longest prefix v of w with $\varphi(v) \ge m$, and for every longer prefix v' we have $\varphi(v') < m$."

Claim: We have $S \cap D_1 = \emptyset$, but also $S \not\mid D_1$.

Dyck language $D_1 := \{ w \in \Sigma^{\omega} \mid \forall v \in \text{prefix}(w) : \varphi(v) \ge 0 \}$. //No prefix with more \bar{a} s than as.

Language S: $w \in S$ iff "For every value $m \in \mathbb{N}$, there is a longest prefix v of w with $\varphi(v) \ge m$, and for every longer prefix v' we have $\varphi(v') < m$."

Claim: We have $S \cap D_1 = \emptyset$, but also $S \not\mid D_1$.

This is because S contains $w_n := (a^{n+1}\bar{a}^{n+2})^{\omega}$ for all $n \in \mathbb{N}$.

For an *n*-state Büchi automaton with an accepting run for w_n , we can pump each block a^{n+1} , which yields an accepting run for a word in D_1 .

Talk and Proof Outline

- ✓ Formally define Büchi VASS and their regular separability problem.
- ✓ Show that regular separability \neq disjointness in Büchi VASS.
- Prove decidability of regular separability in Büchi VASS.
 - Wlog. one input is the generator language D_n .
 - How do possible separators look like in this case?
 - Find witnesses for inseparability.

 $\Sigma_n = \{a_1, \ldots, a_n\} \cup \{\overline{a}_1, \ldots, \overline{a}_n\}$

$$\Sigma_n = \{a_1, \dots, a_n\} \cup \{\bar{a}_1, \dots, \bar{a}_n\}$$
$$\varphi_i : \Sigma_n^* \to \mathbb{Z}, w \mapsto |w|_{a_i} - |w|_{\bar{a}_i}.$$

$$\Sigma_n = \{a_1, \ldots, a_n\} \cup \{\overline{a}_1, \ldots, \overline{a}_n\}$$

$$\varphi_i: \Sigma_n^* \to \mathbb{Z}, w \mapsto |w|_{a_i} - |w|_{\bar{a}_i}.$$

Dyck language $D_n := \{ w \in \Sigma_n^{\omega} \mid \forall v \in \operatorname{prefix}(w) \colon \forall i \in [1, n] \colon \varphi_i(v) \ge 0 \}.$

$$\Sigma_n = \{a_1, \ldots, a_n\} \cup \{\overline{a}_1, \ldots, \overline{a}_n\}$$

 $\varphi_i: \Sigma_n^* \to \mathbb{Z}, w \mapsto |w|_{a_i} - |w|_{\bar{a}_i}.$

Dyck language $D_n := \{ w \in \Sigma_n^{\omega} \mid \forall v \in \operatorname{prefix}(w) \colon \forall i \in [1, n] \colon \varphi_i(v) \ge 0 \}.$

Lemma (fixing one input as D_n)

Given \mathcal{V}_1 and \mathcal{V}_2 , we can compute in polynomial-time a Büchi VASS \mathcal{V} so that $L(\mathcal{V}_1) \mid L(\mathcal{V}_2)$ if and only if $L(\mathcal{V}) \mid D_n$.

$$\Sigma_n = \{a_1, \ldots, a_n\} \cup \{\overline{a}_1, \ldots, \overline{a}_n\}$$

 $\varphi_i: \Sigma_n^* \to \mathbb{Z}, w \mapsto |w|_{a_i} - |w|_{\bar{a}_i}.$

Dyck language $D_n := \{ w \in \Sigma_n^{\omega} \mid \forall v \in \operatorname{prefix}(w) \colon \forall i \in [1, n] \colon \varphi_i(v) \ge 0 \}.$

Lemma (fixing one input as D_n)

Given \mathcal{V}_1 and \mathcal{V}_2 , we can compute in polynomial-time a Büchi VASS \mathcal{V} so that $L(\mathcal{V}_1) \mid L(\mathcal{V}_2)$ if and only if $L(\mathcal{V}) \mid D_n$.

The proof is similar to the finite word case (Czerwinski, Z., 2020).

Proof Outline

- ✓ Formally define Büchi VASS and their regular separability problem.
- ✓ Show that regular separability \neq disjointness in Büchi VASS.
- Prove decidability of regular separability in Büchi VASS.
 - ✓ Wlog. one input is the generator language D_n .
 - How do possible separators look like in this case?
 - Find witnesses for inseparability.

How to be **in**separable from D_n :

How to be **in**separable from D_n :

Finite prefix: The letter balance can get arbitrarily high at the start.

How to be **in**separable from D_n :

Finite prefix: The letter balance can get arbitrarily high at the start.

Infinite Suffix: There can be infinitely many infixes v with arbitrarily high letter balance.

How to be separable from D_n :

How to be separable from D_n :

Finite prefix: Define $P_{i,k}$ for $i \in [1, n], k \in \mathbb{N}$: There is a prefix v with $\varphi_i(v) < 0$ such that for every shorter prefix v' we have $\varphi(v') < k$.

How to be separable from D_n :

Finite prefix: Define $P_{i,k}$ for $i \in [1, n], k \in \mathbb{N}$: There is a prefix v with $\varphi_i(v) < 0$ such that for every shorter prefix v' we have $\varphi(v') < k$.

Infinite Suffix: Define $S_{\mathbf{x},k}$ for $\mathbf{x} \in \mathbb{N}^n$, $k \in \mathbb{N}$: There is a prefix v such that every infix u starting after vadmits $x_1\varphi_1(u) + \cdots + x_n\varphi_n(u) < k$.

How to be separable from D_n :

Finite prefix: Define $P_{i,k}$ for $i \in [1, n], k \in \mathbb{N}$: There is a prefix v with $\varphi_i(v) < 0$ such that for every shorter prefix v' we have $\varphi(v') < k$.

Infinite Suffix: Define $S_{\mathbf{x},k}$ for $\mathbf{x} \in \mathbb{N}^n$, $k \in \mathbb{N}$: There is a prefix v such that every infix u starting after vadmits $x_1\varphi_1(u) + \cdots + x_n\varphi_n(u) < k$.

Theorem (basic separators)

Let $R \subseteq \Sigma_n^{\omega}$ be ω -regular with $R \cap D_n = \emptyset$. Then R is included in a finite union of languages $P_{i,k}$ and $S_{\mathbf{x},k}$.

Proving Basic Separators

Assume ω -regular R is disjoint from D_n . Construct a system of equations $Ax \leq b$ based on R's automaton.

Farkas' Lemma

Let $\mathbf{A} \in \mathbb{Q}^{m \times n}$ be a matrix and let $\mathbf{b} \in \mathbb{Q}^m$ be a column vector. Then the system $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ either has a solution $\mathbf{x} \in \mathbb{Q}_{\geq 0}^n$, or there is a vector $\mathbf{y} \in \mathbb{Q}_{\geq 0}^m$ with $\mathbf{y}^\top \mathbf{A} \geq \mathbf{0}$ and $\mathbf{y}^\top \mathbf{b} < \mathbf{0}$.

Proving Basic Separators

Assume ω -regular R is disjoint from D_n . Construct a system of equations $Ax \leq b$ based on R's automaton.

Farkas' Lemma

Let $\mathbf{A} \in \mathbb{Q}^{m \times n}$ be a matrix and let $\mathbf{b} \in \mathbb{Q}^m$ be a column vector. Then the system $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ either has a solution $\mathbf{x} \in \mathbb{Q}_{\geq 0}^n$, or there is a vector $\mathbf{y} \in \mathbb{Q}_{\geq 0}^m$ with $\mathbf{y}^\top \mathbf{A} \geq \mathbf{0}$ and $\mathbf{y}^\top \mathbf{b} < \mathbf{0}$.

If we obtain a solution x, then $R \subseteq S_{x,k}$ for some k.

Proving Basic Separators

Assume ω -regular R is disjoint from D_n . Construct a system of equations $Ax \leq b$ based on R's automaton.

Farkas' Lemma

Let $\mathbf{A} \in \mathbb{Q}^{m \times n}$ be a matrix and let $\mathbf{b} \in \mathbb{Q}^m$ be a column vector. Then the system $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ either has a solution $\mathbf{x} \in \mathbb{Q}_{\geq 0}^n$, or there is a vector $\mathbf{y} \in \mathbb{Q}_{\geq 0}^m$ with $\mathbf{y}^\top \mathbf{A} \geq \mathbf{0}$ and $\mathbf{y}^\top \mathbf{b} < \mathbf{0}$.

If we obtain a solution \boldsymbol{x} , then $R \subseteq S_{\boldsymbol{x},k}$ for some k.

If we obtain a vector \boldsymbol{y} , then this implies $R \cap D_n \neq \emptyset$.

Proof Outline

- ✓ Formally define Büchi VASS and their regular separability problem.
- ✓ Show that regular separability \neq disjointness in Büchi VASS.
- Prove decidability of regular separability in Büchi VASS.
 - ✓ Wlog. one input is the generator language D_n .
 - How do possible separators look like in this case?
 - Find witnesses for inseparability.

Given a Büchi VASS \mathcal{V} as input, construct its Karp-Miller graph.

Given a Büchi VASS \mathcal{V} as input, construct its Karp-Miller graph. Then in this graph look for an inseparability flower, consisting of a stem and 3 cycles (petals):

Given a Büchi VASS \mathcal{V} as input, construct its Karp-Miller graph. Then in this graph look for an inseparability flower, consisting of a stem and 3 cycles (petals):

Given a Büchi VASS \mathcal{V} as input, construct its Karp-Miller graph. Then in this graph look for an inseparability flower, consisting of a stem and 3 cycles (petals):

subject to the following conditions:

- **(1)** The combined cycle $\alpha\beta\gamma$ adds a vector in \mathbb{N}^d in the VASS.
- 2) The combined cycle $\alpha\beta$ has non-negative letter balance: $\varphi(\alpha\beta) \ge \mathbf{0}$.
- Solution Cycles $\alpha\beta\gamma$ and α have the following relationship: $\varphi(\alpha\beta\gamma) \in \mathbb{Q} \cdot \varphi(\alpha)$.

Talk Outline

- ✓ Formally define Büchi VASS and their regular separability problem.
- ✓ Show that regular separability \neq disjointness in Büchi VASS.
- Prove decidability of regular separability in Büchi VASS.
 - ✓ Wlog. one input is the generator language D_n .
 - How do possible separators look like in this case?
 - Find witnesses for inseparability.

Results

Results

Model	Lower Bound	Upper Bound
1-dim. Büchi VASS (binary enc.)	PSPACE	PSPACE
Arbitrary Büchi VASS	EXPSPACE	ACKERMANN

Lower bounds follow from disjointness.

PSPACE upper bound follows from config. reachability in 2-dim. VASS.

ACKERMANN upper bound follows from size of the Karp-Miller graph.

Conclusion

Conclusion

In solving this problem we found out the exact ways in which Büchi automata can capture VASS behavior.

Conclusion

In solving this problem we found out the exact ways in which Büchi automata can capture VASS behavior.

If you really want to understand the relationships between language classes: Study separability! Appendix

Sources

Sources I

- Michael Blondin, Matthias Englert, Alain Finkel, Stefan Göller, Christoph Haase, Ranko Lazic, Pierre McKenzie, and Patrick Totzke. The Reachability Problem for Two-Dimensional Vector Addition Systems with States.
 - *J. ACM*, 68(5):34:1–34:43, 2021.
 - Wojciech Czerwinski, Slawomir Lasota, Roland Meyer, Sebastian Muskalla, K. Narayan Kumar, and Prakash Saivasan.
 Regular Separability of Well-Structured Transition Systems.
 In Sven Schewe and Lijun Zhang, editors, 29th International Conference on Concurrency Theory (CONCUR 2018), volume 118 of Leibniz International Proceedings in Informatics (LIPIcs), pages 35:1–35:18, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

Sources

Sources II

Wojciech Czerwiński and Georg Zetzsche.
An Approach to Regular Separability in Vector Addition Systems.
In Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, *Proc. of the Thirty-Fifth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2020)*, pages 341–354. ACM, 2020.