

Regular Separability and Non-Determinizability of WSTS

Authors: Eren Keskin, Roland Meyer

 $L, K \subseteq \Sigma^*$ regularly separable:

$L, K \subseteq \Sigma^*$ regularly separable: $\exists R \in REG(\Sigma) . L \subseteq R \text{ and } K \cap R = \emptyset$

$L, K \subseteq \Sigma^*$ regularly separable: $\exists R \in REG(\Sigma) . L \subseteq R \text{ and } K \cap R = \emptyset$

$L, K \subseteq \Sigma^* \text{ regularly separable}:$ $\exists \mathbf{R} \in REG(\Sigma) \, . \, \mathbf{L} \subseteq \mathbf{R} \text{ and } \mathbf{K} \cap \mathbf{R} = \emptyset$

$L, K \subseteq \Sigma^* \text{ regularly separable}:$ $\exists \mathbf{R} \in REG(\Sigma) \, . \, \mathbf{L} \subseteq \mathbf{R} \text{ and } \mathbf{K} \cap \mathbf{R} = \emptyset$

Technische Universität Braunschweig

04.10.2023 Separability and Non-determinizablity in WSTS

ULTS labeled transition system with monotony wrt. \leq

ULTS labeled transition system with monotony wrt. \leq

ULTS labeled transition system with monotony wrt. \leq

ULTS labeled transition system with monotony wrt. \leq

(Q, \leq) WQO: WSTS

$q_0 \quad q_1 \quad q_2 \quad q_3 \quad q_4 \quad q_5 \quad q_6 \quad q_7 \quad \dots$

$6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1 \quad 0 \quad 7 \quad \cdots$

. . .

Known Results [Czerwiński et al., CONCUR18]

Known Result I:

All pairs of disjoint WSTS languages are regularly separable **provided one is deterministic**.

Known Results [Czerwiński et al., CONCUR18]

Known Result I:

All pairs of disjoint WSTS languages are regularly separable **provided one is deterministic**.

Known Result II:

Many WSTS can be determinized.

Determinization is allowed to change the WQO!

Determinization is allowed to change the WQO!

Example: U VAS

Determinization is allowed to change the WQO!

Example: U VAS

 $U \text{ State space: } (\mathbb{N}^k, \leq)$ $U_{det} \text{ State space: } (\mathbb{D}(\mathbb{N}^k), \subseteq)$

Determinization is allowed to change the WQO!

Example: U VAS

```
U State space: (\mathbb{N}^k, \leq)

U_{det} State space: (\mathbb{D}(\mathbb{N}^k), \subseteq)

\mathbf{MQO!} \ (\omega^2 - \mathbb{WQO})
```


Our Contributions [CONCUR 23]

Known Result I:

All pairs of disjoint WSTS languages are regularly separable **provided one is deterministic**.

Known Result II:

Many WSTS can be determinized.

Our Contributions [CONCUR 23]

Known Result I:

All pairs of disjoint WSTS languages are regularly separable **provided one is deterministic**.

New Result I:

ALL pairs of disjoint WSTS languages are regularly separable.

Known Result II:

Many WSTS can be determinized.

Our Contributions [CONCUR 23]

Known Result I:

All pairs of disjoint WSTS languages are regularly separable **provided one is deterministic**.

New Result I:

ALL pairs of disjoint WSTS languages are regularly separable.

Known Result II:

Many WSTS can be determinized.

New Result II:

Some WSTS can not be determinized.

Technische Universität Braunschweig

04.10.2023 Separability and Non-determinizablity in WSTS

Technische Universität Braunschweig

04.10.2023 |Separability and Non-determinizablity in WSTS

U, V ULTS, **not just WSTS!**, one det. $L(U) \cap L(V) = \emptyset$

U, V ULTS, **not just WSTS!**, one det. $L(U) \cap L(V) = \emptyset$

$U \times V$

Finitely rep. inductive invariant in $U \times V \Longrightarrow L(U)$, L(V) reg. sep

Finite representation of *S*:

04.10.2023 Separability and Non-determinizablity in WSTS

Finite representation of *S*:

Finite representation of *S*:

Finite representation of *S*:

Set S in a WQO:

Set S in a WQO:

Set S in a WQO:

BUT: Determinization breaks WQO

Key Problem

Find **finitely rep.** inductive invariants *without* using ideals.

U

VGet a pair of WSTS $L(U) \cap L(V) = \emptyset$

 U_{det}

 V_{det}

Determinize!

 U_{det}

 V_{det}

Determinize! No longer WSTS, accept it!

 $U_{det} \times V_{det}$

Determinize! No longer WSTS, accept it!

$$U_{det} \times V_{det}$$

$$\uparrow$$

$$S$$

Determinize! No longer WSTS, accept it!

 $L(U_{det}) \cap L(V_{det}) = \emptyset \Longrightarrow$ Inductive Invariant S

 $U_{det} \times V_{det}$

Determinize! No longer WSTS, accept it! Exploit the remaining properties.

Which properties?

Which properties?

Key Insight [Rado, 54]

All sequences of downward closed subsets have *converging subsequences*.

q_0,q_1,\ldots converges if $\bigsqcup_{i\in\mathbb{N}} \prod_{j\geq i} q_j = \bigsqcup_{i\in\mathbb{N}} q_i$ - The limit

$\begin{array}{l} q_0,q_1,\ldots \text{ converges if } \bigsqcup_{i\in\mathbb{N}}q_j=\bigsqcup_{i\in\mathbb{N}}q_i \ \clubsuit \ \text{The limit} \\ \hline & & & & \\ q_0=\{a\} \ q_1=\{b\} \ q_2=\{a,c\} \ \ldots \ q_n=\{b,c\} \ q_{n+1}=\{b,a\} \ \ldots \end{array}$

q_0, q_1, \ldots converges if $| \ | \ | \ q_j = | \ | q_i$ - The limit $i \in \mathbb{N} j \ge i$ $i \in \mathbb{N}$ $q_0 = \{a\} \quad q_1 = (b) \quad q_2 = \{a, c\} \quad \dots \quad q_n = \{b, c\} \quad q_{n+1} = \{b, a\} \quad \dots$

Finite Representation

Definition

 $S \cup$ Limit Points = cl(S)

Finite Representation

Definition

 $S \cup$ Limit Points = cl(S)

Lemma

cl(S) is an inductive invariant

Proof: Limits stable under $\delta(-, a)$, disjoint from F

Finite Representation

Definition

 $S \cup$ Limit Points = cl(S)

Lemma

cl(S) is an inductive invariant

Proof: Limits stable under $\delta(-, a)$, disjoint from F

Lemma

cl(S) represented by finitely many max. Elements

Proof: Zorn's Lemma

Non-Determinizability

Technische Universität Braunschweig

04.10.2023 |Separability and Non-determinizablity in WSTS

Question: L(Deterministic WSTS) = L(AII WSTS)?

Is non-determinism more expressive?

[Czerwiński et al., CONCUR 18] ω^2 -WSTS 📀

Is non-determinism more expressive?

[Czerwiński et al., CONCUR 18] ω^2 -WSTS Finitely branching WSTS

Is non-determinism more expressive?

[Czerwiński et al., CONCUR 18] ω^2 -WSTS Finitely branching WSTS

We show

Infinitely branching, non ω^2 -WSTS 😵

Problem: Expressiveness of det. WSTS

<u>Problem:</u> Expressiveness of det. WSTS <u>Solution:</u> Myhill-Nerode-esque approach

<u>Problem:</u> Expressiveness of det. WSTS <u>Solution:</u> Myhill-Nerode-esque approach

 $w \leq_L v$ if

<u>Problem:</u> Expressiveness of det. WSTS <u>Solution:</u> Myhill-Nerode-esque approach

$$w \leq_{L} v \quad \text{if} \quad w \quad x_{0} \in L$$
$$x_{1} \not \in L$$
$$x_{1} \not \in L$$
$$x_{2} \in L$$
$$x_{3} \in L$$
$$x_{4} \not \in L$$
$$x_{5} \in L$$
$$\vdots$$

<u>Problem:</u> Expressiveness of det. WSTS <u>Solution:</u> Myhill-Nerode-esque approach

What can det. WSTS do?

<u>Problem:</u> Expressiveness of det. WSTS <u>Solution:</u> Myhill-Nerode-esque approach

Lemma

L accepted by deterministic WSTS iff (Σ^* , \leq_L) WQO.

What can det. WSTS do?

<u>Problem:</u> Expressiveness of det. WSTS <u>Solution:</u> Myhill-Nerode-esque approach

Lemma

L accepted by deterministic WSTS iff (Σ^* , \leq_L) WQO.

Is non-determinism more expressive?

[Czerwiński et al., CONCUR 18] ω^2 -WSTS Finitely branching WSTS

We show

Infinitely branching, non ω^2 -WSTS 😵

Is non-determinism more expressive?

[Czerwiński et al., CONCUR 18] ω^2 -WSTS 🗸 Finitely branching WSTS =WQO embeds the Rado WQO! We show Infinitely branching, non ω^2 -WSTS (\otimes

The Rado WQO

$(i,j) \leq_R (i',j')$ iff $(i = i' \text{ and } j \leq j')$ or $j \leq i'$

The Rado WQO

The Rado WQO

We have shown: All disjoint WSTS pairs are regularly separable.

$$\bigsqcup_{i\in\mathbb{N}} \prod_{j\geq i} q_j = \bigsqcup_{i\in\mathbb{N}} q_i$$

We have shown: All disjoint WSTS pairs are regularly separable.

$$\bigsqcup_{i\in\mathbb{N}} \prod_{j\geq i} q_j = \bigsqcup_{i\in\mathbb{N}} q_i$$

We have shown: Non-det. is strictly more expressive.

S

Technische Universität Braunschweig

04.10.2023 |Separability and Non-determinizablity in WSTS

We have shown: All disjoint WSTS pairs are regularly separable.

We have shown: Non-det. is strictly more expressive.

In the paper: All results also hold for downward WSTS

S

We have shown: All disjoint WSTS pairs are regularly separable.

We have shown: Non-det. is strictly more expressive.

S

In the paper: All results also hold for downward WSTS ... and many more relationships between the classes!

Appendix

Closed Form of a Fragment of the witness language ${\cal T}$

$$T \cap a^*\bar{a}^*zero^* = \{a^n\bar{a}^nzero^k \mid n,k \in \mathbb{N}\} \cup \\ \{a^n\bar{a}^kzero^l \mid n,k,l \in \mathbb{N}, n-k > l\}$$

