

Regular Separability and Non-Determinizability of WSTS
Authors: Eren Keskin, Roland Meyer

Regular Separability

Regular Separability

$L, K \subseteq \Sigma^{*}$ regularly separable:

Regular Separability

$L, K \subseteq \Sigma^{*}$ regularly separable:

$$
\exists R \in R E G(\Sigma) . L \subseteq R \text { and } K \cap R=\varnothing
$$

Regular Separability

$L, K \subseteq \Sigma^{*}$ regularly separable:
$\exists R \in R E G(\Sigma) . L \subseteq R$ and $K \cap R=\varnothing$

Regular Separability

$L, K \subseteq \Sigma^{*}$ regularly separable:
$\exists R \in R E G(\Sigma) . L \subseteq R$ and $K \cap R=\varnothing$

Regular Separability

$L, K \subseteq \Sigma^{*}$ regularly separable:
$\exists R \in R E G(\Sigma) . L \subseteq R$ and $K \cap R=\varnothing$

ULTS and WSTS

ULTS labeled transition system with monotony wrt. \leq

ULTS and WSTS

ULTS labeled transition system with monotony wrt. \leq

ULTS and WSTS

ULTS labeled transition system with monotony wrt. \leq

ULTS and WSTS

ULTS labeled transition system with monotony wrt. \leq

(Q, \leq) WQO: WSTS

WQO

"Every infinite sequence has an increasing pair"

WQO

"Every infinite sequence has an increasing pair"
q_{0}
q_{1}
q_{2}
q_{3}
q_{4}
q_{5}
q_{6}
q_{7}

WQO

"Every infinite sequence has an increasing pair"

WQO

"Every infinite sequence has an increasing pair"
$\begin{array}{lllllllll}6 & 5 & 4 & 3 & 2 & 1 & 0 & 7 & \ldots\end{array}$

WQO

"Every infinite sequence has an increasing pair"

WSTS

Petri nets / VASS

Concurrent programs under TSO

Lossy channel systems

Known Results [Czerwiński et al., CONCUR18]

Known Result I:

All pairs of disjoint WSTS languages are regularly separable provided one is deterministic.

Known Results [Czerwiński et al., CONCUR18]

Known Result I:

All pairs of disjoint WSTS languages are regularly separable provided one is deterministic.

Known Result II:
Many WSTS can be determinized.

Determinizability

Determinizability

Determinization is allowed to change the WQO!

Determinizability

Determinization is allowed to change the WQO!

Example: U VAS

Determinizability

Determinization is allowed to change the WQO!

Example: U VAS
U State space: $\left(\mathbb{N}^{k}, \leq\right)$
$U_{\text {det }}$ State space: $\left(\mathbb{D}\left(\mathbb{N}^{k}\right), \subseteq\right)$

Determinizability

Determinization is allowed to change the WQO!

Example: U VAS
U State space: $\left(\mathbb{N}^{k}, \leq\right)$
$U_{\text {det }}$ State space: $\left(\mathbb{D}\left(\mathbb{N}^{k}\right), \subseteq\right)$
WQO! (ω^{2}-WQO)

Our Contributions [CONCUR 23]

Known Result I:

All pairs of disjoint WSTS languages are regularly separable provided one is deterministic.

Known Result II:

Many WSTS can be determinized.

Our Contributions [CONCUR 23]

Known Result I:

All pairs of disjoint WSTS languages are regularly

 separable provided one is deterministic.New Result I:
ALL pairs of disjoint WSTS languages are regularly separable.

Known Result II:
Many WSTS can be determinized.

Our Contributions [CONCUR 23]

Known Result I:

All pairs of disjoint WSTS languages are regularly separable provided one is deterministic.

New Result I:

ALL pairs of disjoint WSTS languages are regularly separable.

Known Result II:

Many WSTS can be determinized.

New Result II:

Some WSTS can not be determinized.

Regular Separability

Proof Technique in [Czerwiński et al., CONCUR 18]

Proof Technique in [Czerwiński et al., CONCUR 18]

U, V ULTS, not just WSTS!, one det.

$$
L(U) \cap L(V)=\varnothing
$$

Proof Technique in [Czerwiński et al., CONCUR 18]

Proof Technique in [Czerwiński et al., CONCUR 18]

$$
L(U) \cap L(V)=\varnothing
$$

$$
L(U \times V)=\varnothing \Longrightarrow
$$

Inductive invariant S

Proof Technique in [Czerwiński et al., CONCUR 18]

Inductive invariant S

Proof Technique in [Czerwiński et al., CONCUR 18]

Inductive invariant S

Proof Technique in [Czerwiński et al., CONCUR 18]

Inductive invariant S

Proof Technique in [Czerwiński et al., CONCUR 18]

$$
U \times V
$$

U, V ULTS, not just WSTS!, one det.

$$
L(U) \cap L(V)=\varnothing
$$

Finitely rep. inductive invariant in $U \times V \Longrightarrow L(U), L(V)$ reg. sep

Proof Technique in [Czerwiński et al., CONCUR 18]

Finite representation of S :

Proof Technique in [Czerwiński et al., CONCUR 18]

Finite representation of S :

Proof Technique in [Czerwiński et al., CONCUR 18]

Finite representation of S :

Proof Technique in [Czerwiński et al., CONCUR 18]

Finite representation of S :

Proof Technique in [Czerwiński et al., CONCUR 18]

Set S in a WQO:

Proof Technique in [Czerwiński et al., CONCUR 18]

Set S in a WQO:

Proof Technique in [Czerwiński et al., CONCUR 18]

Set S in a WQO:

BUT: Determinization breaks WQO

Key Problem Find finitely rep. inductive invariants without using ideals.

Our Approach

$$
\begin{array}{lll}
U & V & \begin{array}{l}
\text { Get a pair of WSTS } \\
L(U) \cap L(V)=\varnothing
\end{array}
\end{array}
$$

Our Approach

$U_{d e t}$
 $V_{d e t}$
 Determinize!

Our Approach

$U_{d e t}$ $V_{d e t}$

Determinize!

No longer WSTS, accept it!

Our Approach

$U_{d e t} \times V_{d e t}$

Determinize!

No longer WSTS, accept it!

Our Approach

$U_{\text {det }} \times V_{\text {det }}$ \uparrow

$L\left(U_{\text {det }}\right) \cap L\left(V_{\text {det }}\right)=\varnothing \Longrightarrow$ Inductive Invariant S

Determinize!

No longer WSTS, accept it!

Our Approach

$U_{d e t} \times V_{d e t}$

Determinize!
No longer WSTS, accept it!
Exploit the remaining properties.

Our Approach

Which properties?

Our Approach

Which properties?

Key Insight [Rado, 54]

All sequences of downward closed subsets have converging subsequences.

Convergence

q_{0}, q_{1}, \ldots converges if $\bigsqcup_{i \in \mathbb{N} j \geq i} q_{j}=\bigsqcup_{i \in \mathbb{N}} q_{i} \leftarrow$ The limit

Convergence

q_{0}, q_{1}, \ldots converges if $\bigsqcup_{i \in \mathbb{N} j \geq i} q_{j}=\bigsqcup_{i \in \mathbb{N}}$

\checkmark

$$
q_{0}=\{a\} \quad q_{1}=\{b\} \quad q_{2}=\{a, c\} \quad \ldots \quad q_{n}=\{b, c\} \quad q_{n+1}=\{b, a\} \quad \ldots
$$

Convergence

q_{0}, q_{1}, \ldots converges if $\bigsqcup_{i \in \mathbb{N} j \geq i} q_{j}=\bigsqcup_{i \in \mathbb{N}} q_{i} \leftarrow$ The limit

\checkmark

$$
q_{0}=\{a\} \quad q_{1}=b \quad q_{2}=\{a, c\} \quad \ldots \quad q_{n}=\{b, c\} \quad q_{n+1}=\{b, a\} \quad \ldots
$$

Convergence

q_{0}, q_{1}, \ldots converges if $\bigsqcup_{i \in \mathbb{N} j \geq i} q_{j}=\bigsqcup_{i \in \mathbb{N}}$

3

$$
\left.\left.q_{0}=\{a\} \quad q_{1}=\text { b } \quad q_{2}=\{a, c\} \quad \ldots \quad q_{n}=\text { (b) } c\right\} \quad q_{n+1}=\text { (b) } a\right\} \odot
$$

Convergence

q_{0}, q_{1}, \ldots converges if $\bigsqcup \square q_{j}=\bigsqcup q_{i} \leftarrow$ The limit

凸

$$
\left.\left.q_{0}=\{a\} \quad q_{1}=(b) \quad q_{2}=\{a, c\} \quad \ldots \quad q_{n}=\text { (b) } c\right\} \quad q_{n+1}=\text { (b) } a\right\} \odot
$$

Convergence

q_{0}, q_{1}, \ldots converges if

\checkmark

$$
\left.\left.q_{0}=\{a\} \quad q_{1}=b \quad q_{2}=\{a, c\} \quad \ldots \quad q_{n}=b . c\right\} \quad q_{n+1}=b, a\right\} \curvearrowright
$$

Finite Representation

Definition

$S \cup$ Limit Points $=c l(S)$

Finite Representation

Definition

$S \cup$ Limit Points $=\operatorname{cl}(S)$
Lemma
$\operatorname{cl}(S)$ is an inductive invariant
Proof: Limits stable under $\delta(-, a)$, disjoint from F

Finite Representation

Definition
 $S \cup$ Limit Points $=c l(S)$

Lemma
$\operatorname{cl}(S)$ is an inductive invariant
Proof: Limits stable under $\delta(-, a)$, disjoint from F

Lemma

$\operatorname{cl}(S)$ represented by finitely many max. Elements
Proof: Zorn's Lemma

Non-Determinizability

Question:
 $L($ Deterministic WSTS $)=L($ All WSTS $) ?$

Is non-determinism more expressive?

[Czerwiński et al., CONCUR 18] ω^{2}-WSTS

Is non-determinism more expressive?

[Czerwiński et al., CONCUR 18] ω^{2}-WSTS
 Finitely branching WSTS

Is non-determinism more expressive?

[Czerwiński et al., CONCUR 18] ω^{2}-WSTS
Finitely branching WSTS
We show
Infinitely branching, non ω^{2}-WSTS

What can det. WSTS do?

What can det. WSTS do?

Problem: Expressiveness of det. WSTS

What can det. WSTS do?

Problem: Expressiveness of det. WSTS Solution: Myhill-Nerode-esque approach

What can det. WSTS do?

Problem: Expressiveness of det. WSTS Solution: Myhill-Nerode-esque approach

$$
w \leq_{L} v \quad \text { if }
$$

What can det. WSTS do?

Problem: Expressiveness of det. WSTS Solution: Myhill-Nerode-esque approach

What can det. WSTS do?

Problem: Expressiveness of det. WSTS Solution: Myhill-Nerode-esque approach

$$
\begin{aligned}
& \text {. } x_{0} \in L \quad . x_{0} \in L \\
& w \leq_{L} v \\
& \text { if } \\
& \text {. } x_{1} \notin L \\
& \begin{aligned}
\mathcal{W} & . x_{2} \in L \\
& . x_{3} \in L \\
& . x_{4} \notin L \\
& . x_{5} \in L
\end{aligned} \quad \begin{array}{r}
\text { V } \begin{array}{l}
. x_{2} \in L \\
\\
\end{array} \quad \begin{array}{ll}
x_{3} \in L
\end{array} \\
\end{array}
\end{aligned}
$$

What can det. WSTS do?

Problem: Expressiveness of det. WSTS Solution: Myhill-Nerode-esque approach

Lemma

L accepted by deterministic WSTS iff $\left(\Sigma^{*}, \leq_{L}\right)$ WQO.

What can det. WSTS do?

Problem: Expressiveness of det. WSTS Solution: Myhill-Nerode-esque approach

Lemma

L accepted by deterministic WSTS iff $\left(\Sigma^{*}, \leq_{L}\right)$ WQO.
Wanted: Language with infinite anti-chain

Is non-determinism more expressive?

[Czerwiński et al., CONCUR 18] ω^{2}-WSTS
Finitely branching WSTS
We show
Infinitely branching, non ω^{2}-WSTS

Is non-determinism more expressive?

[Czerwiński et al., CONCUR 18] ω^{2}-WSTS
Finitely branching WSTS
=WQO embeds the Rado WQO!

We show

 Infinitely branching, non ω^{2}-WSTS ©
The Rado WQO

$$
\begin{aligned}
& (0,8)(1,8)(2,8)(3,8)(4,8)(5,8)(6,8)(7,8) \\
& (0,7)(1,7)(2,7)(3,7)(4,7)(5,7)(6,7)(7,7) \\
& (0,6)(1,6)(2,6)(3,6)(4,6)(5,6)(6,6) \\
& (0,5)(1,5)(2,5)(3,5)(4,5)(5,5) \\
& (0,4)(1,4)(2,4)(3,4)(4,4) \\
& (0,3)(1,3)(2,3) \\
& (0,2)(1,2) \\
& (0,1)(1,2) \\
& (0,0)
\end{aligned}
$$

$(i, j) \leq_{R}\left(i^{\prime}, j^{\prime}\right) \quad$ iff $\quad\left(i=i^{\prime}\right.$ and $\left.j \leq j^{\prime}\right)$ or $j \leq i^{\prime}$

The Rado WQO

$$
\begin{aligned}
& (0,8)(1,8)(2,8)(3,8)(4,8)(5,8)(6,8)(7,8) \\
& (0,7)(1,7)(2,7)(3,7)(4,7)(5,7)(6,7)(7,7) \\
& (0,6)(1,6)(2,6)(3,6)(4,6)(5,6)(6,6) \\
& (0,5)(1,5)(2,5)(3,5)(4,5)(5,5) \\
& (0,4)(1,4)(2,4)(3,4)(4,4) \\
& (0,3)(1,3)(2,3)(3,3) \\
& (0,2)(1,2)(2,2) \\
& (0,1)(1,1) \\
& (0,0)
\end{aligned}
$$

$(i, j) \leq_{R}\left(i^{\prime}, j^{\prime}\right) \quad$ iff $\quad\left(i=i^{\prime}\right.$ and $\left.j \leq j^{\prime}\right)$ or $j \leq i^{\prime}$

The Rado WQO

$|$| $(0,8)(1,8)(2,8)(3,8)(4,8)(5,8)(6,8)(7,8)$ |
| :--- |
| $(0,7)(1,7)(2,7)(3,7)(4,7)(5,7)(6,7)(7,7)$ |
| $(0,6)(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)$ |
| $(0,5)(1,5)(2,5)(3,5)(4,5)(5,5)$ |
| $(0,4)(1,4)(2,4)(3,4)(4,4)$ |
| $(0,3)(1,3)(2,3)$ |
| $(0,2)(1,3)$ |
| $(0,1)$ |
| $(0,2)$ |
| $(1,1)$ |

$(0,0)$
$(i, j) \leq_{R}\left(i^{\prime}, j^{\prime}\right) \quad$ iff $\quad\left(i=i^{\prime}\right.$ and $\left.j \leq j^{\prime}\right)$ or $j \leq i^{\prime}$

Downward Closed Subsets of the Rado WQO

Downward Closed Subsets of the Rado WQO

Not a WQO: Anti-chain of columns!

Downward Closed Subsets of the Rado WQO

Not a WQO: Anti-chain of columns!

$$
\begin{aligned}
& (0,0)
\end{aligned}
$$

Downward Closed Subsets of the Rado WQO

Not a WQO: Anti-chain of columns!

Downward Closed Subsets of the Rado WQO

Not a WQO: Anti-chain of columns!

Downward Closed Subsets of the Rado WQO

Not a WQO: Anti-chain of columns!

Downward Closed Subsets of the Rado WQO

Not a WQO: Anti-chain of columns!

The Witness Language

Wanted: Language with infinite anti-chain

The Witness Language

Wanted: Language with infinite anti-chain

The Witness Language

Wanted: Language with infinite anti-chain

The Witness Language

Wanted: Language with infinite anti-chain

Technische
Universität
Braunschweig

Conclusion

Conclusion

We have shown: All disjoint WSTS pairs are regularly separable.

$$
\bigsqcup_{i \in \mathbb{N} j \geq i} q_{j}=\bigsqcup_{i \in \mathbb{N}} q_{i}
$$

Conclusion

We have shown: All disjoint WSTS pairs are regularly separable.

$$
\bigsqcup_{i \in \mathbb{N} j \geq i} q_{j}=\bigsqcup_{i \in \mathbb{N}} q_{i}
$$

We have shown: Non-det. is strictly more expressive.

Conclusion

We have shown: All disjoint WSTS pairs are regularly separable.

$$
\bigsqcup_{i \in \mathbb{N} j \geq i} q_{j}=\bigsqcup_{i \in \mathbb{N}} q_{i}
$$

We have shown: Non-det. is strictly more expressive.

In the paper: All results also hold for downward WSTS

Conclusion

We have shown: All disjoint WSTS pairs are regularly separable.

$$
\bigsqcup_{i \in \mathbb{N} j \geq i} q_{j}=\bigsqcup_{i \in \mathbb{N}} q_{i}
$$

We have shown: Non-det. is strictly more expressive.

In the paper: All results also hold for downward WSTS
... and many more relationships between the classes!

Appendix

Closed Form of a Fragment of the witness language T

$$
\begin{aligned}
T \cap a^{*} \bar{a}^{*} z e r o * & \left\{a^{n} \bar{a}^{n} z \operatorname{ero}^{k} \mid n, k \in \mathbb{N}\right\} \cup \\
& \left\{a^{n} \bar{a}^{k} z \operatorname{ero}^{l} \mid n, k, l \in \mathbb{N}, n-k>l\right\}
\end{aligned}
$$

