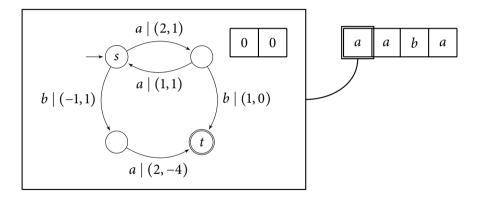
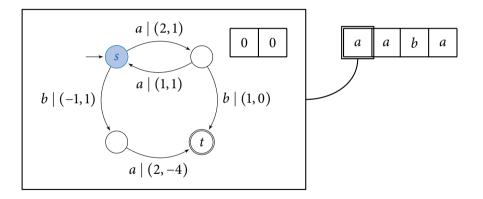
Regular Separators for VASS Coverability Languages

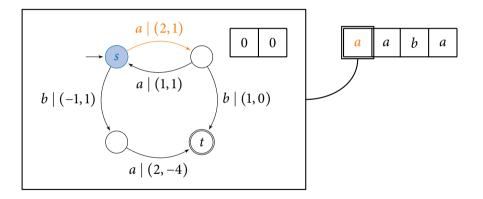
Chris Köcher Georg Zetzsche

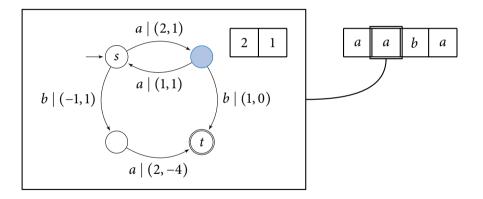
Max Planck Institute for Software Systems, Kaiserslautern

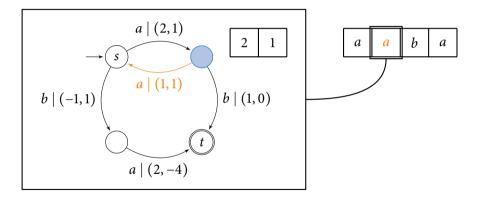
1

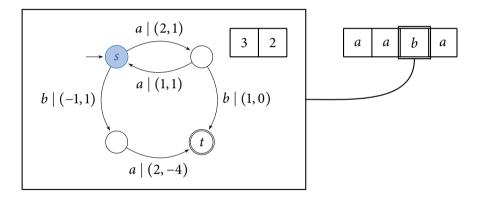


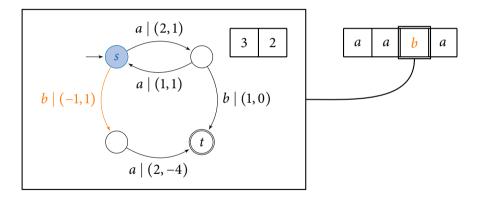


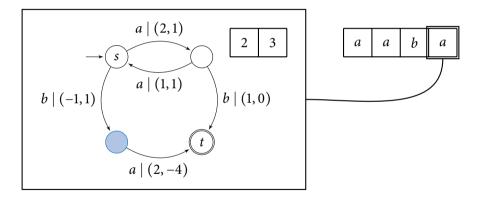


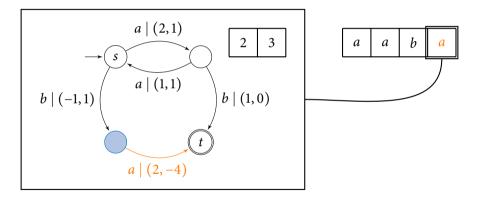


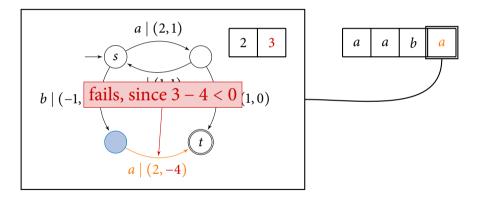


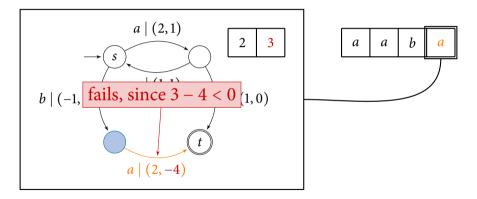










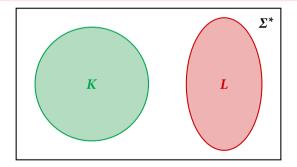


 $L(\mathfrak{V}) = \{ w \in \Sigma^* \mid \exists \vec{v} \in \mathbb{N}^d : (s, \vec{0}) \xrightarrow{w}_{\mathfrak{V}} (t, \vec{v}) \ge (t, \vec{0}) \}$

Regular Separability (1)

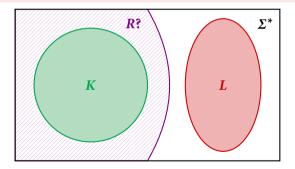
Problem

Given two languages $K, L \subseteq \Sigma^*$.



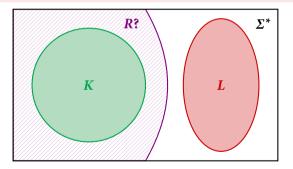
Problem

- Given two languages $K, L \subseteq \Sigma^*$.
- Is there a regular language $R \subseteq \Sigma^*$ with $K \subseteq R$ and $L \cap R = \emptyset$?



Problem

- Given two languages $K, L \subseteq \Sigma^*$.
- Is there a regular language $R \subseteq \Sigma^*$ with $K \subseteq R$ and $L \cap R = \emptyset$?



■ Note: Regular Separability ≠ Disjointness!

Theorem (Czerwiński et al. @ CONCUR 2018)

Let \mathfrak{V} and \mathfrak{W} be two VASS. Then $L(\mathfrak{V})$ and $L(\mathfrak{W})$ are regular separable if, and only if, $L(\mathfrak{V}) \cap L(\mathfrak{W}) = \emptyset$.

Theorem (Czerwiński et al. @ CONCUR 2018)

Let \mathfrak{V} and \mathfrak{W} be two VASS. Then $L(\mathfrak{V})$ and $L(\mathfrak{W})$ are regular separable if, and only if, $L(\mathfrak{V}) \cap L(\mathfrak{W}) = \emptyset$.

Question

What is the size of a regular separator of $L(\mathfrak{V})$ and $L(\mathfrak{W})$?

Czerwiński et al.: doubly exp. lower bound & triply exp. upper bound

Theorem (Czerwiński et al. @ CONCUR 2018)

Let \mathfrak{V} and \mathfrak{W} be two VASS. Then $L(\mathfrak{V})$ and $L(\mathfrak{W})$ are regular separable if, and only if, $L(\mathfrak{V}) \cap L(\mathfrak{W}) = \emptyset$.

Question

What is the size of a regular separator of $L(\mathfrak{V})$ and $L(\mathfrak{W})$?

Czerwiński et al.: doubly exp. lower bound & triply exp. upper bound

Theorem (Main Theorem)

Let \mathfrak{V} and \mathfrak{W} be two VASS with $\leq n$ states and updates of norm $\leq m$. If $L(\mathfrak{V}) \cap L(\mathfrak{W}) = \emptyset$ then there is an separating NFA with at most $(n + m)^{2^{\text{poly}(d)}}$ many states.

$$\Gamma_d = \{\mathbf{a_i}, \overline{\mathbf{a_i}} \mid 1 \le i \le d\}$$

a_i increase counter *i* by 1

a_i decrease counter *i* by 1

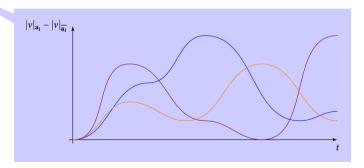
• $C_d = \{ w \in \Gamma_d^* \mid \forall \text{ prefixes } v \text{ of } w, 1 \le i \le d : |v|_{\mathbf{a}_i} \ge |v|_{\overline{\mathbf{a}_i}} \}$

$$\Gamma_d = \{ \mathbf{a_i}, \overline{\mathbf{a_i}} \mid 1 \le i \le d \}$$

$$\mathbf{a_i} \text{ increase counter } i \text{ by } 1$$

$$\mathbf{a_i} \text{ decrease counter } i \text{ by } 1$$

$$\mathbf{C_d} = \{ w \in \Gamma_d^* \mid \forall \text{ prefixes } v \text{ of } w, 1 \le i \le d : |v|_{\mathbf{a_i}} \ge |v|_{\overline{\mathbf{a_i}}} \}$$



$$\Gamma_d = \{\mathbf{a_i}, \overline{\mathbf{a_i}} \mid 1 \le i \le d\}$$

a_i increase counter *i* by 1

• $\overline{\mathbf{a}_i}$ decrease counter *i* by 1

•
$$C_d = \{ w \in \Gamma_d^* \mid \forall \text{ prefixes } v \text{ of } w, 1 \le i \le d : |v|_{\mathbf{a}_i} \ge |v|_{\overline{\mathbf{a}_i}} \}$$

Lemma (Jantzen 1979)

 $L \subseteq \Sigma^*$ is a VASS coverability language iff there is a rational transduction T with $L = T(C_d)$.

$$\Gamma_d = \{\mathbf{a_i}, \overline{\mathbf{a_i}} \mid 1 \le i \le d\}$$

■ **a**_i increase counter *i* by 1

• $\overline{\mathbf{a}_i}$ decrease counter *i* by 1

•
$$C_d = \{ w \in \Gamma_d^* \mid \forall \text{ prefixes } v \text{ of } w, 1 \le i \le d : |v|_{\mathbf{a}_i} \ge |v|_{\overline{\mathbf{a}_i}} \}$$

Lemma (Jantzen 1979)

 $L \subseteq \Sigma^*$ is a VASS coverability language iff there is a rational transduction T with $L = T(C_d)$.

$$\mathfrak{V}: \quad a \mid (0,1) \quad b \mid (1,-2)$$

$$\xrightarrow{b \mid (1,-1)} \quad t$$

$$\varepsilon \mid (0,0)$$

$$\Gamma_d = \{\mathbf{a_i}, \overline{\mathbf{a_i}} \mid 1 \le i \le d\}$$

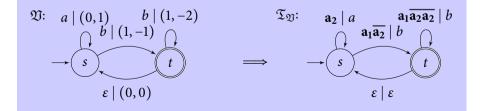
■ **a**_i increase counter *i* by 1

• $\overline{\mathbf{a}_i}$ decrease counter *i* by 1

•
$$C_d = \{ w \in \Gamma_d^* \mid \forall \text{ prefixes } v \text{ of } w, 1 \le i \le d : |v|_{\mathbf{a}_i} \ge |v|_{\overline{\mathbf{a}_i}} \}$$

Lemma (Jantzen 1979)

 $L \subseteq \Sigma^*$ is a VASS coverability language iff there is a rational transduction T with $L = T(C_d)$.



$$\Gamma_d = \{\mathbf{a_i}, \overline{\mathbf{a_i}} \mid 1 \le i \le d\}$$

■ **a**_i increase counter *i* by 1

• $\overline{\mathbf{a}_i}$ decrease counter *i* by 1

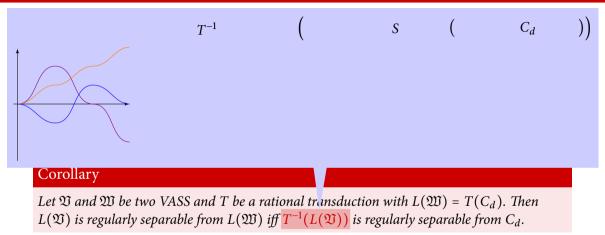
•
$$C_d = \{ w \in \Gamma_d^* \mid \forall \text{ prefixes } v \text{ of } w, 1 \le i \le d : |v|_{\mathbf{a}_i} \ge |v|_{\overline{\mathbf{a}_i}} \}$$

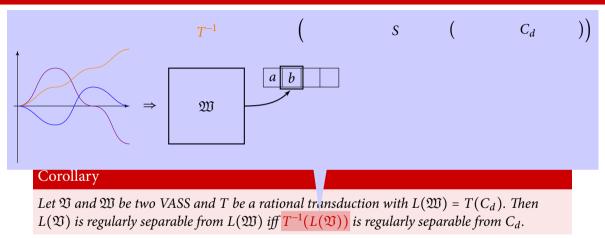
Lemma (Jantzen 1979)

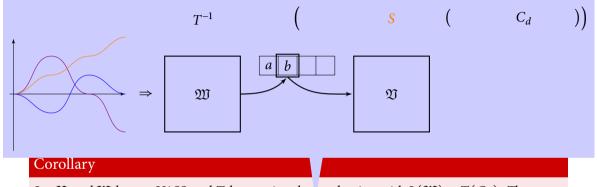
 $L \subseteq \Sigma^*$ is a VASS coverability language iff there is a rational transduction T with $L = T(C_d)$.

Corollary

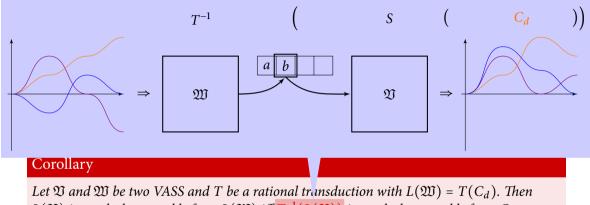
Let \mathfrak{V} and \mathfrak{W} be two VASS and T be a rational transduction with $L(\mathfrak{W}) = T(C_d)$. Then $L(\mathfrak{V})$ is regularly separable from $L(\mathfrak{W})$ iff $T^{-1}(L(\mathfrak{V}))$ is regularly separable from C_d .







Let \mathfrak{V} and \mathfrak{W} be two VASS and T be a rational transduction with $L(\mathfrak{W}) = T(C_d)$. Then $L(\mathfrak{V})$ is regularly separable from $L(\mathfrak{W})$ iff $T^{-1}(L(\mathfrak{V}))$ is regularly separable from C_d .



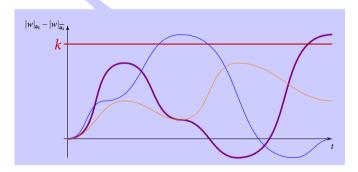
 $L(\mathfrak{V})$ is regularly separable from $L(\mathfrak{W})$ iff $T^{-1}(L(\mathfrak{V}))$ is regularly separable from C_d .

For $k \in \mathbb{N}$ let $B_k \subseteq \Gamma_d^*$ be the following language: $w \in B_k$ iff there is $1 \le i \le d$ with

- there is a prefix v of w with |v|_{ai} < |v|_{ai} and
 each proper prefix u of v satisfies 0 ≤ |u|_{ai} |u|_{ai} ≤ k

For $k \in \mathbb{N}$ let $B_k \subseteq \Gamma_d^*$ be the following language: $w \in B_k$ iff there is $1 \le i \le d$ with

- there is a prefix v of w with |v|_{ai} < |v|_{ai} and
 each proper prefix u of v satisfies 0 ≤ |u|_{ai} |u|_{ai} ≤ k

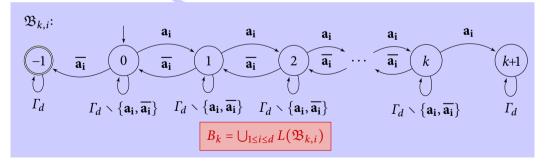


- For $k \in \mathbb{N}$ let $B_k \subseteq \Gamma_d^*$ be the following language: $w \in B_k$ iff there is $1 \le i \le d$ with

 - there is a prefix v of w with |v|_{ai} < |v|_{ai} and
 each proper prefix u of v satisfies 0 ≤ |u|_{ai} |u|_{ai} ≤ k
- B_k is accepted by a DFA of size $O(k^d)$.

For $k \in \mathbb{N}$ let $B_k \subseteq \Gamma_d^*$ be the following language: $w \in B_k$ iff there is $1 \le i \le d$ with

- there is a prefix v of w with $|v|_{a_i} < |v|_{\overline{a_i}}$ and
- each proper prefix u of v satisfies $0 \le |u|_{\mathbf{a}_i} |u|_{\overline{\mathbf{a}_i}} \le k$
- B_k is accepted by a DFA of size $O(k^d)$.



- For $k \in \mathbb{N}$ let $B_k \subseteq \Gamma_d^*$ be the following language: $w \in B_k$ iff there is $1 \le i \le d$ with
 - there is a prefix v of w with $|v|_{a_i} < |v|_{\overline{a_i}}$ and
 - each proper prefix u of v satisfies $0 \le |u|_{\mathbf{a}_i} |u|_{\overline{\mathbf{a}_i}} \le k$
- B_k is accepted by a DFA of size $O(k^d)$.

Theorem (Czerwiński & Zetzsche @ LICS 2020)

Let \mathfrak{V} and \mathfrak{W} be two VASS with $L(\mathfrak{V}) \cap L(\mathfrak{W}) = \emptyset$ and let T be a rational transduction with $L(\mathfrak{W}) = T(C_d)$. Then B_k is a regular separator of $T^{-1}(L(\mathfrak{V}))$ and C_d for a $k \in \mathbb{N}$.

Theorem (Rackoff 1978)

Let \mathfrak{V} be a VASS, c be a configuration of \mathfrak{V} , and a vector $\vec{v} \in \mathbb{N}^d$ with $c \to_{\mathfrak{V}}^* (t, \vec{v}) \ge (t, \vec{0})$. Then there is $0 \le \ell \le (n+m)^{2^{\text{poly}(d)}}$ and $\vec{w} \in \mathbb{N}^d$ with $c \to_{\mathfrak{V}}^\ell (t, \vec{w}) \ge (t, \vec{0})$.

=:Rackoff(\mathfrak{V})

Here, n is the number of states in \mathfrak{V} *and m is the norm of the counter updates in* \mathfrak{V} *.*

Theorem (Rackoff 1978)

Let \mathfrak{V} be a VASS, c be a configuration of \mathfrak{V} , and a vector $\vec{v} \in \mathbb{N}^d$ with $c \to_{\mathfrak{V}}^* (t, \vec{v}) \ge (t, \vec{0})$. Then there is $0 \le \ell \le (n+m)^{2^{\text{poly}(d)}}$ and $\vec{w} \in \mathbb{N}^d$ with $c \to_{\mathfrak{V}}^\ell (t, \vec{w}) \ge (t, \vec{0})$.

=:Rackoff(𝔅)

Here, n is the number of states in \mathfrak{V} and m is the norm of the counter updates in \mathfrak{V} .

Theorem

Let \mathfrak{V} and \mathfrak{W} be two VASS with $L(\mathfrak{V}) \cap L(\mathfrak{W}) = \emptyset$ and let T be a rational transduction with $L(\mathfrak{W}) = T(C_d)$. Then $B_{\text{Rackoff}(\mathfrak{V} \times \mathfrak{W})}$ is a regular separator of $T^{-1}(L(\mathfrak{V}))$ and C_d .

Theorem (Rackoff 1978)

Let \mathfrak{V} be a VASS, c be a configuration of \mathfrak{V} , and a vector $\vec{v} \in \mathbb{N}^d$ with $c \to_{\mathfrak{V}}^* (t, \vec{v}) \ge (t, \vec{0})$. Then there is $0 \le \ell \le (n+m)^{2^{\text{poly}(d)}}$ and $\vec{w} \in \mathbb{N}^d$ with $c \to_{\mathfrak{V}}^\ell (t, \vec{w}) \ge (t, \vec{0})$.

=:Rackoff(𝔅)

Here, n is the number of states in \mathfrak{V} and m is the norm of the counter updates in \mathfrak{V} .

Theorem

Let \mathfrak{V} and \mathfrak{W} be two VASS with $L(\mathfrak{V}) \cap L(\mathfrak{W}) = \emptyset$ and let T be a rational transduction with $L(\mathfrak{W}) = T(C_d)$. Then $B_{\text{Rackoff}(\mathfrak{V} \times \mathfrak{W})}$ is a regular separator of $T^{-1}(L(\mathfrak{V}))$ and C_d .

Finally, $T(B_{\text{Rackoff}(\mathfrak{V}\times\mathfrak{W})})$ is a regular separator of $L(\mathfrak{V})$ and $L(\mathfrak{W})$.

		NFAs		DFAs	
		unary	binary	unary	binary
d as input		2-exp.		3-exp.	
d fixed	$d \ge 2$	poly.	exp.	exp.	2-exp.
	d = 1	poly.	exp.	exp.	exp.

			NFAs		DFAs	
		unary	binary	unary	binary	
d as input		2-exp.		3-exp.		
d fixed	$d \ge 2$	poly.	exp.	exp.	2-exp.	
	d = 1	poly.	exp.	exp.	exp.	

Thank you!