Longest Common Subsequence with Gap Constraints

Duncan Adamson Maria Kosche Tore Koß Florin Manea Stefan Siemer

Göttingen University, Germany

Theorietag 2023 Kaiserslautern

Introduction

Subsequence

Subsequence

Subsequence

Subsequences are a central concept in many different areas of TCS:

- Formal languages and logics (piecewise testable languages, subword order and downward closures).
- Combinatorics on words.
- Chemformatics.
- Modelling concurrency.
- Database theory (event stream processing).
- Algorithms (longest common subsequence, shortest common supersequence).

 Σ is a finite alphabet, e.g., $\Sigma = \{ \mathtt{a}, \mathtt{b}, \mathtt{c}, \mathtt{d} \}.$

$$w = a b b a c b a b$$

$$s = b b a s[1] s[2] s[3]$$

 Σ is a finite alphabet, e.g., $\Sigma = \{a,b,c,d\}.$

Notation

Embedding: $e : \{1, \ldots, |s|\} \rightarrow \{1, \ldots, |w|\}$ with $e(1) < \ldots < e(|s|)$.

Adamson, Kosche, Koß, Manea, Siemer Longest Common Subsequence with Gap Constraints

 Σ is a finite alphabet, e.g., $\Sigma = \{a,b,c,d\}.$

Notation

Embedding: $e : \{1, \ldots, |s|\} \rightarrow \{1, \ldots, |w|\}$ with $e(1) < \ldots < e(|s|)$. $s \leq_e w$: e is an embedding with $s[i] = w[e(i)] \ \forall i \in \{1, 2, \ldots, |s|\}$.

 Σ is a finite alphabet, e.g., $\Sigma = \{a,b,c,d\}.$

Notation

Embedding: $e : \{1, \ldots, |s|\} \rightarrow \{1, \ldots, |w|\}$ with $e(1) < \ldots < e(|s|)$. $s \leq_e w$: e is an embedding with $s[i] = w[e(i)] \ \forall i \in \{1, 2, \ldots, |s|\}$.

s is subsequence of w ($s \leq w$) if there is some embedding e with $s \leq_e w$.

Adding Gap Constraints

Classic setting

Classical subsequences are usually considered with arbitrary embeddings.

Adding Gap Constraints

Classic setting

Classical subsequences are usually considered with arbitrary embeddings.

Constraint setting

Constraints on the embeddings of subsequences (Day, Kosche, Manea, Schmid ISAAC 22).

Adding Gap Constraints

Classic setting

Classical subsequences are usually considered with arbitrary embeddings.

Constraint setting

Constraints on the embeddings of subsequences (Day, Kosche, Manea, Schmid ISAAC 22).

For practical scenarios, it is reasonable to introduce *gap constraints*. We restrict the length of the gaps by a lower and upper bound.

- Alignments of bio-sequences.
- Modelling single processor scheduling with fairness properties.

One could also restrict the letters/languages of the gaps.

• Complex event processing \rightarrow forbidding events in specific positions of a subsequence (not in this paper).

$$w = a b c b c a b c a b a c$$

 $s = c a b a$

 $gap_e(w, i) = w[e(i) + 1..e(i+1) - 1]$ $i \in \{1, \ldots, |w| - 1\}$

$$w = a \quad b \quad c \quad b \quad c \quad a \quad b \quad c \quad a \quad b \quad a \quad c$$

 $s = c \quad a \quad b \quad a$
 $gap_e(w, 1) = bc$
 $gap_e(w, 2) = \varepsilon$
 $gap_e(w, 3) = c$

7/20

$$\begin{split} & \operatorname{gap}_{\bar{e}}(w,1) = \operatorname{b}\operatorname{c}\operatorname{a}\operatorname{b}\operatorname{c} \\ & \operatorname{gap}_{\bar{e}}(w,2) = \varepsilon \\ & \operatorname{gap}_{\bar{e}}(w,3) = \varepsilon \end{split}$$

$$w = a$$
 b c b c a b c a b a c
 $s = c$ a b a
 $gap_{\bar{e}}(w, 1) = bcabc$
 $gap_{\bar{e}}(w, 2) = \varepsilon$
 $gap_{\bar{e}}(w, 3) = \varepsilon$

Gap constraints

 $gc = (C_1, \ldots, C_{|s|-1})$, where $C_i = (\ell_i, u_i)$ for every $i \in \{1, \ldots, |s|-1\}$. (tuple of gap constraints) The embedding *e satisfies gc w.r.t. s*, if, for every $i \in [|s|-1]$, $\ell_i \leq |gap_e(w, i)| \leq u_i$.

$$w = a \quad b \quad c \quad b \quad c \quad a \quad b \quad c \quad a \quad b \quad c \quad a \quad b \quad a \quad c$$

$$s = c \quad a \quad b \quad a$$

$$gap_e(w, 1) = bc \qquad C_1 = (1, 2)$$

$$gap_e(w, 2) = \varepsilon \qquad C_2 = (0, 3)$$

$$gap_e(w, 3) = c \qquad C_3 = (1, 3)$$

Gap constraints

 $gc = (C_1, \ldots, C_{|s|-1})$, where $C_i = (\ell_i, u_i)$ for every $i \in \{1, \ldots, |s|-1\}$. (tuple of gap constraints) The embedding *e satisfies gc w.r.t. s*, if, for every $i \in [|s|-1]$, $\ell_i \leq |gap_e(w, i)| \leq u_i$.

$$w = a \quad b \quad c \quad b \quad c \quad a \quad b \quad c \quad a \quad b \quad a \quad c$$
$$s = c \quad a \quad b \quad a$$
$$gap_{\bar{e}}(w,1) = b c a b c \qquad C_1 = (1,2)$$
$$gap_{\bar{e}}(w,2) = \varepsilon \qquad C_2 = (0,3)$$
$$gap_{\bar{e}}(w,3) = \varepsilon \qquad C_3 = (1,3)$$

Gap constraints

 $gc = (C_1, \ldots, C_{|s|-1})$, where $C_i = (\ell_i, u_i)$ for every $i \in \{1, \ldots, |s|-1\}$. (tuple of gap constraints) The embedding *e satisfies gc w.r.t. s*, if, for every $i \in [|s|-1]$, $\ell_i \leq |gap_e(w, i)| \leq u_i$.

Problem

Given v, w of size m and n, compute the largest $k \in [m]$ such that there exists a common subsequence s of both v and w with |s| = k.

Problem

Given v, w of size m and n, compute the largest $k \in [m]$ such that there exists a common subsequence s of both v and w with |s| = k.

Idea

Classical dynamic programming approach.

ldea

Classical dynamic programming approach.

Algorithm and lower bound (Abboud, Backurs, Williams)

Folklore algorithm solving LCS in O(N) time (N = mn). Conditional lower bound as a $O(N^{1-\epsilon})$ would refute SETH.

Problem: We want to add gap constraints, but we dont know how long the LCS is.

• Given a large enough tuple of constraints in the input.

- Given a large enough tuple of constraints in the input.
- All gaps have the same constraint.

- Given a large enough tuple of constraints in the input.
- All gaps have the same constraint.
- Draw from a constant sized pool of constraints.

10/20

- Given a large enough tuple of constraints in the input.
- All gaps have the same constraint.
- Draw from a constant sized pool of constraints.
- Gap constraints are determined by surrounding letters.

10/20

Problem

Given $v, w \in \Sigma^*$ and an (m-1)-tuple of gap-length constraints gc, compute the largest $k \in \mathbb{N}$ such that there exists a common gc[1: k-1]-subsequence s of v and w, with |s| = k.

LCS is a particular case of LCS-MC, where $gc = ((0, n), \dots, (0, n))$.

Problem

Given $v, w \in \Sigma^*$ and an (m-1)-tuple of gap-length constraints gc, compute the largest $k \in \mathbb{N}$ such that there exists a common gc[1: k-1]-subsequence s of v and w, with |s| = k.

LCS is a particular case of LCS-MC, where $gc = ((0, n), \dots, (0, n))$.

Idea

- for each $p \in [m]$, a matrix $M_p \in \{0,1\}^{m imes n}$
- M_p[i, j] = 1 if and only if there exists a string s with |s| = p ending in v[i] and w[j] satisfying gc[1 : p − 1].
- compute M_1 by setting $M_1[i,j] = 1$ if and only if v[i] = w[j]
- $M_{\rho}[i][j] = 1$, iff $M_{\rho-1}[I][J]$ contains a 1 and v[i] = w[j].
- $M_{k+1}[\cdot][\cdot] = 0$, while $M_k[i][j] = 1$ for some i, j.

Idea

- for each $p \in [m]$, a matrix $M_p \in \{0,1\}^{m imes n}$
- M_p[i, j] = 1 if and only if there exists a string s with |s| = p ending in v[i] and w[j] satisfying gc[1 : p − 1].
- compute M_1 by setting $M_1[i,j] = 1$ if and only if v[i] = w[j]
- $M_{\rho}[i][j] = 1$, iff $M_{\rho-1}[I][J]$ contains a 1 and v[i] = w[j].

•
$$M_{k+1}[\cdot][\cdot] = 0$$
, while $M_k[i][j] = 1$ for some i, j .

Result

LCS-MC can be solved in O(Nk) time, where k is the largest number for which there exists a common gc[1: k-1]-subsequence s of v and w.

Problem

Consider the variation of LCS-MC for increasing tuples of gap-length constraints gc; this variant is called LCS-MC-INC.

Problem

Consider the variation of LCS-MC for increasing tuples of gap-length constraints gc; this variant is called LCS-MC-INC.

13/20

ldea

- Matrix M[i][j] = p if there is subsequence s with |s| = p ending in v[i], w[j] satisfying gc[1: p 1].
- Using a 2D-Segment tree data structure for efficient maximum queries..

ldea

- Matrix M[i][j] = p if there is subsequence s with |s| = p ending in v[i], w[j] satisfying gc[1: p 1].
- Using a 2D-Segment tree data structure for efficient maximum queries..

Result

LCS-MC-INC can be solved in $O(N \log^2 N)$.

Problem

Given $v, w \in \Sigma^*$ and an (m-1)-tuple of identical gap-length constraints $gc = ((\ell, u), \ldots, (\ell, u))$, compute the largest $k \in \mathbb{N}$ such that there exists a common gc[1: k-1]-subsequence s of v and w, with |s| = k.

Problem

Given $v, w \in \Sigma^*$ and an (m-1)-tuple of identical gap-length constraints $gc = ((\ell, u), \ldots, (\ell, u))$, compute the largest $k \in \mathbb{N}$ such that there exists a common gc[1: k-1]-subsequence s of v and w, with |s| = k.

Idea

- Matrix M[i][j] = p if there is subsequence s with |s| = p ending in v[i], w[j] satisfying gc[1: p-1] where gc[i] = gc[i+1].
- Use maximum queues on columns to report maximum of relevant part within each column.
- Use maximum queue on each row that gets maxima of each column as input.

Idea

- Matrix M[i][j] = p if there is subsequence s with |s| = p ending in v[i], w[j] satisfying gc[1: p-1] where gc[i] = gc[i+1].
- Use maximum queues on columns to report maximum of relevant part within each column.
- Use maximum queue on each row that gets maxima of each column as input.

Result

LCS-1C can be solved in O(N) time.

$LCS-\Sigma$ Problem

Problem

Given two words $v, w \in \Sigma^*$ and two functions $left : \Sigma \to [n] \times [n]$ and $right : \Sigma \to [n] \times [n]$, compute the largest number $k \in \mathbb{N}$ such that there exists a common (*left*, *right*)-subsequence s of v and w, with |s| = k.

When left(a) = (0, n) for all $a \in \Sigma$ (respectively, right(a) = (0, n) for all $a \in \Sigma$), the gap constraints are defined only by the function right (respectively, left), and the problem $LCS - \Sigma$ is denoted $LCS - \Sigma R$ (respectively, $LCS - \Sigma L$).

$LCS-\Sigma$ Problem

Problem

Given two words $v, w \in \Sigma^*$ and two functions $left : \Sigma \to [n] \times [n]$ and $right : \Sigma \to [n] \times [n]$, compute the largest number $k \in \mathbb{N}$ such that there exists a common (*left*, *right*)-subsequence s of v and w, with |s| = k.

When left(a) = (0, n) for all $a \in \Sigma$ (respectively, right(a) = (0, n) for all $a \in \Sigma$), the gap constraints are defined only by the function right (respectively, left), and the problem $LCS - \Sigma$ is denoted $LCS - \Sigma R$ (respectively, $LCS - \Sigma L$).

LCS- Σ Results

$$|\Sigma| = \sigma$$

Idea LCS- ΣR

- maintain σ many submatrices.
- Two dimensional Range Maximum Query data structure.

$LCS-\Sigma$ Results

$$|\Sigma| = \sigma$$

Idea LCS- ΣR

- maintain σ many submatrices.
- Two dimensional Range Maximum Query data structure.

LCS-Σ

- maintain σ^2 many submatrices.
- maintain σ many 2D-RMQ data structures.

$LCS-\Sigma$ Results

$$|\Sigma| = \sigma$$

Idea LCS- ΣR

- maintain σ many submatrices.
- Two dimensional Range Maximum Query data structure.

LCS-Σ

- maintain σ^2 many submatrices.
- maintain σ many 2D-RMQ data structures.

Result

LCS- Σ R, LCS- Σ L can be solved in $O(\min\{N\sigma, N \log m\})$. LCS- Σ can be solved in $O(\min\{N\sigma^2, N\sigma \log m\})$ time.

- LCS-MC can be solved in O(Nk) time.
- LCS-MC-INC can be solved in $O(N \log^2 N)$.
- LCS-1C can be solved in O(N) time.
- LCS-O(1)C-SYNC can be solved in O(N) time.
- LCS- Σ can be solved in $O(\min\{N\sigma^2, N\sigma \log m\})$ time.
- LCS- Σ R, LCS- Σ L can be solved in $O(\min\{N\sigma, N \log m\})$.
- LCS-BR can be solved in $O(NB^{o(1)})$ time.

19/20

- \bullet Can the results of $\mathrm{LCS}\text{-}\mathrm{MC}$ be improved? (or lower bounds)
- Improving Σ dependancy in $\mathrm{LCS}-\Sigma?$
- Other constraints? (e.g. Regular language constraints).
- Efficiently computing the actual longest common constrained subsequence.
- Different constraints on embeddings in v and w.
- Consider any subsequence problem in the context of gap constraints.

- \bullet Can the results of ${\rm LCS-MC}$ be improved? (or lower bounds)
- Improving Σ dependancy in $\mathrm{LCS}-\Sigma?$
- Other constraints? (e.g. Regular language constraints).
- Efficiently computing the actual longest common constrained subsequence.
- Different constraints on embeddings in v and w.
- Consider any subsequence problem in the context of gap constraints.

Thank you!