
k-Universality of Regular Languages

Duncan Adamson1 Pamela Fleischmann2 Annika Huch2

Tore Koß3 Florin Manea3 Dirk Nowotka2

1University of Liverpool, UK

2Kiel University, Germany

3University of Göttingen, Germany

Theorietag “Automaten und Formale Sprachen” 2023
05.10.2023



Preliminaries

w b a c b a a b a d a



Preliminaries

w b a c b a a b a d a

a

bc

d

ba
bc

bbbaab



Preliminaries

w b a c b a a b a d a

a

bc

d

ba
bc

bbbaab

abc

dd



Preliminaries

w b a c b a a b a d a

a

bc

d

ba
bc

bbbaab

abc

dddd



Preliminaries – Subsequences and Universality

Definition

I We call v a subsequence of w , if there exist positions 1 ≤ i1 <
i2 < . . . < ik ≤ |w |, such that v = w [i1]w [i2] · · ·w [ik ].

I We denote the set of all subsequences (of length exactly k) of
w by Subseq(w) (Subseqk(w)).

I A word w is k-universal iff Subseqk(w) = Σk .

I If v is not a subsequence of w we call it an absent subsequence.



Preliminaries – Arch Factorisation

Definition
The universality index ι(w) is the unique integer such that w is
ι(w)-universal but not (ι(w) + 1)-universal.

Definition (Arch-Factorisation, Hébrard 1991)

Let w ∈ Σ∗. Then w = arw (1) · · · arw (ι(w))r(w) such that
ι(arw (i)) = 1, the last letter of arw (i) occurs exactly once in
arw (i) and ι(r(w)) = 0. arw (i) are called the arches of w and
r(w) is called the rest of w .



Preliminaries – Finite Automata

Definition
A finite automaton is a 5-tuple A = (Q,Σ, δ, q0,F ), where Q is a
finite set of states, Σ is an alphabet, δ : Q × Σ→ 2Q is the
transition function, q0 ∈ Q is the initial state und F ⊆ Q is a set
of final states. If |δ(q, a)| ≤ 1 for all q ∈ Q and a ∈ Σ we call A
deterministic (DFA), otherwise we call it non-deterministic (NFA).

We generally let |Q| = n and |Σ| = σ.



Subsequence Universality for Languages

Definition
The downward closure of a language L is defined as
L↓ = {v ∈ Σ∗ | ∃w ∈ L : v ∈ Subseq(w)}.

One could say L is k-universal iff Σk ⊂ L↓.

A reduction from the Hamiltonian Path Problem yields
NP-hardness of the problem to determine the shortest word which
is not a subsequence of any word accepted by an FA A. Hence the
problem to determine whether Σk ⊂ L↓ for any regular language L
is coNP-hard.



Subsequence Universality for Languages

Definition

I L is k-∃-universal iff there is a word in L which is k-universal.

I L is k-∀-universal iff every word in L is k-universal.

Problem
How efficient can we decide, given a language L and an integer k ,
whether L is k-∃-universal (k-ESU) or k-∀-universal (k-ASU)?



Universal Universality

For any language L the set L∀ of words occurring as subsequences
in all words w ∈ L is finite (L∀ =

⋂
w∈L Subseq(w) and Subseq(w)

is finite) but can still be exponential in the length of the shortest
word in L.



Universal Universality

Let A = (Q,Σ, q0,F , δ) be an NFA. We can decide whether A
satisfies k-ASU in deterministic polynomial time:

(i) For q, q′ ∈ Q we define a relation Ra for every a ∈ Σ such
that qRaq

′ if and only if there is a state q′′ such that there is
a path from q to q′′ not containing any a and also a transition
from q′′ to q′ labelled by a.

(ii) Let qRq′ if and only if there is a ∈ Σ such that qRaq
′.

(iii) Let Q ′ = {q ∈ Q | there is a non-universal path from q to F}.
(iv) Let G = (V ,E ) be a directed graph with V = Q and

(q, q′) ∈ E if and only if qRq′.

(v) There is an `-universal word, for an ` < k , accepted by A if
and only if there is a path of length at most k − 1 from q0 to
any node corresponding to a state in Q ′ in G .



Existential Universality

Theorem
We can decide k-ESU in O∗(n32σ) (where the star only hides
poly(σ)-factors resulting from arithmetic with large integers).

Theorem
For σ ∈ Ω(log n), k-ESU is NP-complete (even for k = 1).



Existential Universality – FPT

Let A be a NFA. To check whether L(A) satisfies k-ESU do the
following:

(i) Remove non-accessible and non-co-accessible states in O(n3)

(ii) Check whether there is a loop labelled with a 1-universal
word, if so accept independently from k.

(iii) Otherwise, for every q ∈ Q, find maximal set Vq of letters
occurring in a word βq which is label of a path from q to q
(Vq is unique since the path may contain q more than twice)
in O∗(n32σ).

(iv) We can maximise the universality of any word w ∈ L(A) by
pumping β2q for every state q in an accepting path labelled
with w .

(v) Determine maximal universality of words in L(A) in O∗(n32σ)
with dynamic programming: let M[·][·] be an n × 2σ matrix
such that M[qr ][V ] is the maximal universality of a word w
labelling a path from q0 to qr such that r(w) = V .



Existential Universality – NP-membership

Let A be an NFA with n states over an alphabet of size σ.

Lemma
If A accepts a k-universal word it also accepts a k-universal word
of length at most knσ − (n − 1)(k − 1)

Remark
Let k > n, then A accepts a k-universal word if and only if there is
a state q and a path from q to q labelled with a 1-universal word.



Existential Universality – NP-membership

Let A be an NFA with n states over an alphabet of size
σ ∈ Ω(log n). To check whether L(A) satisfies k-ESU do the
following:

(i) Remove non-accessible and non-co-accessible states.

(ii) Guess non-deterministically whether there is a loop labelled
with a 1-universal word of length at most nσ, if so accept
independently from k , if not reject if k > n.

(iii) Otherwise, check all words in Σ≤knσ if they are k-universal
and accepted by A.



Existential Universality – NP-hardness

Following a proof by Kim, Han, Ko, Salomaa:
Let G = (V ,E ) a graph with V = {v1, . . . , vn}. We construct an
automaton A with n2 + 2 states q0,0, qf and qi ,j for i , j ∈ [1 : n]
where q0,0 is the initial state, qf is a failure state, qn,j is final for
every j ∈ [1 : n] and there is a transition from qi ,j to q`,k labelled
with k if and only if ` = i + 1 and either i = j = 0 or there is an
edge from vj to vk in G . Intuitively qi ,j represents visiting vj at the
i th step in some path in G .
Then a Hamiltonian Path in G corresponds 1-to-1 to an accepting
path labelled with a 1-universal word accepted by A.



Counting and Ranking k-universal Words

Let L ⊂ Σ∗ be a formal language.

I The problem of counting words of L is to determine the size
of L.

I The problem of ranking a word w ∈ L is to determine the size
of the set {v ∈ L | v ≺ w} where ≺ is an arbitrary ordering of
Σ∗, e.g. the length-lexicographic ordering.



Counting and Ranking k-universal Words

In DFAs there is a one-to-one correspondence between paths and
words, in NFAs any word can correspond to several paths. For the
sake of simplicity we count and rank accepting paths in an FA
labelled with k-universal words instead of k-universal words
accepted by an FA.



Counting and Ranking k-universal Words

Given an FA A = (Q,Σ, δ, q0,F ) and two integers k ,m we are
interested in counting and ranking the accepting paths of length
(at most) m labelled with a k-universal word.

We use a dynamic programming approach: Let T be a table of size
n × (m + 1)× k × 2σ called path table of length m. For any
q ∈ Q, ` ∈ [0,m], c ∈ [0, k − 1] and R ⊂ Σ the entry T [q][`][c][R]
denotes the amount of paths π such that π is an `-length path
from q0 to q labelled with a word w such that ι(w) = c and R is
minimal such that r(w) ∈ R∗.

Another n× (m + 1) table U, where U[q][`] denotes the amount of
k-universal paths from q0 to q of length `, is used to fill T .

T and U allow us to count and rank k-universal paths (of length
exactly/at most m) in A.



Type Length Complexity

Counting unrestricted O∗(n4k32σ)
Counting exactly m O∗(n2m2k2σ)
Counting at most m O∗(n2m2k2σ)

Ranking unrestricted O∗(n4k32σ)
Ranking exactly m O∗(n2m2k2σ)
Ranking at most m O∗(n2m2k2σ)

Thank you for listening!
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